История информационных технологий

         

Основные определения и области применения информации


В начале XXI века человечество вступило в эпоху новой научно-технической революции - информационной. В XX веке удалось овладеть многими тайнами превращения вещества и энергии и использовать эти знания для улучшения качества жизни. Примером может служить создание и широкое распространение атомной энергетики.

Но наряду с веществом и энергией в жизни человека огромную роль играет информация - самые разнообразные сведения, сообщения, известия, знания и умения, которые он получает из окружающего мира. И с каждым веком, десятилетием и годом роль информации в жизни человека все увеличивается.

Особенно быстро ее роль возросла после изобретения в середине XX века компьютера - машины для приема, переработки, хранения и выдачи информации. Компьютер является цифровой машиной, в которой информация представляется в виде чисел, как правило, в двоичной системе счисления. Любая информация (например, зрительная или звуковая), за исключением числовой, в компьютере кодируется, т.е. представляется в виде чисел, а затем перерабатывается в соответствии с заложенной программой.

Появление и широкое распространение компьютеров предоставило человеку совершенно новые возможности поиска, получения, накопления, передачи и, главное, обработки информации.

Компьютер был изобретен как средство для скоростных вычислений, своего рода быстродействующий арифмометр. Однако постепенно к его вычислительным возможностям добавились функции почти всех предшествовавших средств коммуникации, превратив его в главное орудие построения современного информационного общества. Сегодня уже нельзя перечислить все сферы применения компьютера. В связи с этим наиболее остроумным определением назначения компьютера можно считать следующее: "Компьютер есть средство решения тех задач, которые человек в состоянии ему поручить на данном уровне развития техники".

С появлением компьютеров сформировалась информатика - наука об общих свойствах и закономерностях информации, методах ее поиска, передачи, хранения, обработки и использования в различных сферах деятельности человека. Термину информатика предшествовал термин кибернетика, которым называли исследования, связанные с использованием информации в системах автоматического управления. Cлово кибернетика (от греческого kibernetike - искусство управления) - название книги великого математика XX века Норберта Винера - стало названием новой науки кибернетики. Но постепенно выяснилось, что кибернетика - это лишь часть более общей науки информатики. В англоязычных странах ее стали называть вычислительной наукой (Computer Science, от английского слова сompute - вычислять). Во франкоязычных странах появился аналогичный термин информатика (informatique). Этот термин в нашей стране и стал названием науки информатики. Она включает в себя теоретическую информатику (в том числе математическую логику и теорию информации), кибернетику, программирование, информационные системы, вычислительную технику, информатику в природе и обществе, проблемы создания искусственного интеллекта.

Своим появлением человеческое общество обязано общественному труду и информационным процессам и технологиям, которые существуют столько тысячелетий, сколько существует человеческое общество.

Процессы получения, хранения, транспортировки (то есть передачи на расстояние), преобразования и представления информации называют информационными процессами.

Что же такое информационные технологии? Это система приемов, способов и методов осуществления информационных процессов. Часто под информационными технологиями понимают также технические и программные средства реализации информационных процессов. Потребность человека общаться с окружающими его людьми, то есть выразить и передать информацию, привела к появлению языка и речи - древнейшей информационной технологии. Дальнейшие этапы - это изобретение книгопечатания, почты, телеграфа, телефона, радио, телевидения, космической связи и, наконец, компьютеров, Интернета и электронной почты.

Информационные технологии можно делить по принципу "до" появления компьютеров и "после" их появления, так же как летоисчисление мы делим на два периода - "до нашей эры" и "нашей эры". Появление компьютеров - это новая эра информационных технологий: цифровая.

Однако не следует забывать, что эра компьютеров не могла наступить без основополагающих открытий в области электричества и прежде всего без работ Л. Гальвани, А. Вольта, А. Ампера, М. Фарадея, Д. Максвелла, Г. Герца.

Областями применения информационных технологий являются такие услуги, как связь и развлечения, системы поддержки деятельности в управленческой, производственной, научной, коммерческой и других сферах, потребительская электроника, например, аудио- и видеосистемы.

Особенность современных информационных технологий заключается в том, что в них предметом и продуктом труда является информация, а орудиями труда служат средства вычислительной техники и связи.

К информационным технологиям относятся средства записи, хранения, обработки, передачи на расстояния (средства связи - сигнализация, почта, телеграф, телефон, радио, телевидение) и воспроизведения информации.

Человек живет в пространстве и времени. В пространстве он может перемещаться, в том числе с помощью самых различных видов транспорта - от телеги до космического корабля. Но во времени он перемещаться не может - ни в прошлое, ни в будущее.

Информационные технологии дают возможность человеку получать сведения о событиях не только в данном месте и настоящем времени, но и в других местах и прошлом времени. Первое - информацию о событиях в других местах - обеспечивают средства связи. Второе - информацию о событиях в прошлом времени - физические тела - носители информации или устройства памяти (камень, бумага, книга, грампластинка, фотография, кинопленка, магнитная пленка, дискета, компакт-диск, карта флэш-памяти и др.), в которые эта информация вносится и сохраняется во времени, другими словами, запоминается с целью последующего воспроизведения. Что называется, не сходя с места человек может узнавать о событиях, происходящих в настоящее время в других местах и происходивших в прошлом.

Областями применения информационных технологий стали практически все сферы жизни: государственное и муниципальное управление, экономика, хозяйственная деятельность, промышленность, строительство, транспорт, связь, оборона, научные исследования, образование, медицина, сфера развлечений и досуга.

Информационные технологии делятся на аналоговые и цифровые.

Аналоговые технологии основаны на способе представления информации в виде какой-либо непрерывной (аналоговой) физической величины, например, напряжения или силы электрического тока, величина которых (сигнал) является носителем информации.

Цифровые технологии основаны на дискретном (от лат. discretus - разделенный, прерывистый) способе представления информации в виде чисел (обычно с использованием двоичной системы счисления), значение которых является носителем информации. Для этого в них используются физические величины, способные принимать только два устойчивых состояния (включено/выключено, есть напряжение / нет напряжения, намагничено / не намагничено). Это обеспечивает предельную простоту цифрового сигнала: есть электрический импульс - единица, нет импульса - ноль. Простота цифровых сигналов обеспечивает (по сравнению с аналоговыми сигналами) их несоизмеримо большую защищенность от помех, в том числе при передаче по каналам связи.

При цифровом представлении информации точность зависит от количества разрядов в числах. Увеличивая число этих разрядов, можно обеспечить любую наперед заданную точность вычислений. В этом состоит главное преимущество цифровых вычислительных устройств по сравнению с аналоговыми. Современные персональные компьютеры оперируют с 32-разрядными двоичными числами. В ближайшем будущем предстоит переход на 64-разрядную структуру.

В стремительном развитии радиотехники и вычислительной техники сыграли главную роль два изобретения - вакуумных электронных ламп в 1905-1907 гг. и полупроводникового транзистора в 1948 году.

В результате изобретения электронных ламп сформировалась технология приборов вакуумной электроники, появились заводы по производству таких приборов, положившие начало развитию электронной промышленности. До 1960-х гг. вакуумная электроника представляла практически всю электронику.

Изобретение полупроводникового транзистора вызвало бурный рост микроэлектроники, отказ от использования электронных ламп.

И еще два изобретения позволили создать целую серию современных портативных устройств - жидкокристаллических дисплеев и светочувствительных приборов с зарядовой связью (ПЗС) в 1970-х гг. В результате созданы цифровые наручные часы, сотовые телефоны, цифровые фото- и видеокамеры, ноутбуки, карманные компьютеры и др.

Появление компьютеров - машин для переработки информации - это новая эра информационных технологий: цифровая, открывающая целый веер новых возможностей. В связи с их появлением и стремительным внедрением практически во все стороны нашей жизни и стал применяться термин "информационные технологии", хотя они, начиная с освоения языка и речи, существовали с самого начала формирования человеческого общества. Изобретение персонального компьютера позволило отдельному пользователю обходиться без помощи программистов за счет использования заранее разработанных программ.

Стремительное развитие микроэлектроники, изобретение компьютера, создание персонального компьютера, глобальной сети Интернет, электронной почты, сотовой мобильной связи и других цифровых информационных технологий вызвало в конце XX и в начале XXI веков информационную революцию. Если раньше информационные технологии обслуживали экономику (понимаемую как совокупность общественных отношений в сфере производства, обмена и распределения продукции), то сегодня они формируют ее.

За последние десятилетия информационный сектор впервые обеспечил большую часть создаваемых в развитых странах новых рабочих мест. Информационные отрасли хозяйства, а также компании, специализировавшиеся на производстве вычислительной техники и программного обеспечения, развивались наиболее быстрыми темпами. Резко возрос спрос на программистов, менеджеров, работников сферы образования; темпы прироста численности этих категорий персонала часто превышали 10 процентов в год. В этот же период на мировой потребительский рынок хлынули товары, определившие его современный облик: персональные компьютеры, системы сотовой, спутниковой связи и т.д.

Совершенствование информационных технологий происходит в несколько раз быстрее, чем технологий использования энергии. Никогда ранее ни в одной сфере хозяйства не достигалось такого прогресса. Так, быстродействие персональных компьютеров возросло более чем в тысячу раз, а объем памяти компьютерного жесткого диска (винчестера) увеличился в несколько сотен раз. Прогресс в информационной сфере постоянно ускоряется ввиду безграничности спроса на новые технологические разработки. Каждая новая компьютерная система не только все быстрее приходит на смену предшествующей, но и обеспечивает себе успех на рынке в более короткие сроки. Это подготовило условия для создания всемирной информационной сети Интернет - самой быстрорастущей отрасли современной экономики. Бурное развитие компьютерных технологий создает в промышленно развитых странах мира не только новый технологический уклад, но и новую социальную реальность. Темпы роста доли в валовом национальном продукте отраслей, непосредственно связанных с производством и использованием знаний (еще в 1950-е годы они получили название "knowledge industries"), составляет уже более 50 процентов. В США на информационные отрасли приходится более 70 процентов общей численности занятых в народном хозяйстве. При изучении экономических процессов в качестве самостоятельного стал выделяться "информационный сектор", который в его современном понимании включает в себя передовые отрасли материального производства, обеспечивающие технологический прогресс, сферу, предлагающую услуги коммуникации и связи, производство информационных технологий и программного обеспечения, а также - во все возрастающей мере - различные области образования. В наше время основными ресурсами общества становятся не труд и капитал, а информация и знания.

Информационная революция привела к созданию информационного общества или общества знаний. Это следующая ступень развития человечества, когда главной ценностью, определяющей благосостояние как отдельных людей, так и целых государств, становятся не материальные блага, а своевременная и легкодоступная информация, точнее - знания, полученные с ее помощью. Элементы нового информационного общества уже реально существуют сегодня, и базируются они на компьютерных и телекоммуникационных технологиях.

Философу Френсису Бэкону принадлежит высказывание: "Кто владеет информацией - владеет миром". В наши дни это высказывание становится все более актуальным. Ведь сегодня объем знаний на планете удваивается каждые пять лет. Информации уже накоплено так много, что ни один человек не способен удержать ее в голове. В нынешних условиях "обладать знанием" - значит уметь быстро ориентироваться в потоке новой информации, легко отыскивая в хранилище знаний необходимые сведения. При этом важно, чтобы затраты на поиск нужной информации не превышали экономическую выгоду от ее использования. Справиться с этой задачей под силу только компьютерам. Компьютерные сети, и в особенности глобальная сеть Интернет, становятся главным средством хранения и передачи данных. Доступ к компьютерным технологиям и телекоммуникациям, а также правильное их использование - вот ключ к успеху в информационном обществе. Те, кто вовремя осознают это и овладеют новыми технологиями, окажутся в преимущественном положении перед другими представителями рода человеческого, так как получат большие возможности для своего профессионального роста и повышения благосостояния. Сегодня при поступлении на работу предпочтение отдается претендентам, которые умеют пользоваться компьютером и Интернетом. Прочие же рискуют остаться на обочине - им придется либо пополнить армию безработных, либо всю жизнь заниматься тяжелым физическим трудом.

В наше время информация и знания являются основой экономического и социального прогресса, важнейшим стратегическим, принципиально новым ресурсом, к которому неприменимо традиционное понятие исчерпаемости. Запасы угля, нефти и природного газа на нашей планете ограничены, а процесс поиска, переработки информации и получения на их основе новых знаний бесконечен, неисчерпаем. Ведь природа информации и знаний такова, что каждая удовлетворенная потребность в них тут же порождает множество новых.

Предлагаемое издание учебника "История информационных технологий" охватывает всю историю их появления и развития: от речи, языка и письменности до самых современных - персонального компьютера, сотовой телефонной связи, глобальной сети Интернет и электронной почты.

<

Язык, речь и письменность


Труд (целесообразная деятельность) создал человека, а общественный труд и информационные технологии создали человеческое общество. Ведь обеспечить себе пропитание, например, убить крупное животное, первобытные люди могли только общими усилиями. При этом они должны были общаться между собой, обмениваться информацией, например, предупреждать друг друга об опасности. Сначала это делалось с помощью мимики, жестов и возгласов, а затем возник язык - важнейшее средство человеческого общения. Он стал средством передачи информации, значительно расширил возможности хранения ее в памяти, стал одним из средств управления поведением человека. Реализуется язык в виде речи - языка в действии. Но говорить тогда можно было только с находящимся рядом собеседником или толпой людей, слушающих говорящего, так как речь исчезает в момент ее произнесения.

Понятие информация в старых словарях и энциклопедиях, например, в Малой Советской энциклопедии 1929 года объяснялось просто как осведомление. Однако в середине ХХ века понятие информация приобрело гораздо более широкий и даже всеобъемлющий смысл, присущий не только всей живой природе - человеку, животным, растениям, - но и автоматическим устройствам, например роботам.

В современном "Словаре русского языка" С.И. Ожегова слово "информация" - это "сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специальным устройством".

В наше время, особенно после создания и всеобщего распространения компьютеров, информация превратилась в общенаучное понятие, включающее обмен сведениями между людьми, человеком и автоматом, обмен сигналами в животном и растительном мире, передачу наследственных признаков от клетки к клетке, от организма к организму. Информация стала основным, базовым понятием кибернетики - науки об управлении в живой природе и технике. Наряду с веществом и энергией информация стала одним из основных понятий окружающего нас мира.

Каждый человек с момента рождения, а если точнее, то даже еще в утробе матери окружен информацией, которую он воспринимает с помощью всех органов чувств - слуха, зрения, обоняния, осязания, вкуса. Для человека, животного или растения информация представляет собой отражение окружающего их реального мира, то есть сведения, которые один реальный объект содержит о другом реальном объекте, - это неотъемлемое свойство живой природы. Получает человек информацию из внешнего мира с помощью своих органов чувств: зрения, слуха, осязания, обоняния и вкуса.

Но одно свойство отличает информацию от основных понятий реального мира - от материи и энергии. Ведь если от одного объекта передать некоторое количество вещества или энергии другому объекту, то в первом объекте вещества или энергии станет меньше на это количество, а во втором - больше. В противоположность этому, при передаче информации от одного объекта другому в первом ее количество не уменьшается, а во втором - увеличивается. Ведь если Вы поделитесь какой-нибудь новостью с другими людьми, они ее узнают, но она и у Вас останется.

Поток информации, который получал древний человек, был довольно ограничен. Восход солнца "сообщал" древнему человеку о том, что пора пробуждаться, а заход солнца - о том, что пора спать. Рычание диких животных заставляло человека спрятаться от них, горький вкус пищи заставлял выплюнуть ее, чтобы не отравиться, палящее солнце - спрятаться в тень, а дождь или гроза - спрятаться в пещеру или хижину. Информация помогала древнему человеку выжить среди опасностей дикой природы.

Современный человек получает целую лавину информации: знания, приобретенные при общении с другими людьми, животными; содержание книг, газет, журналов; сообщения по радио и телевидению; реклама; впечатления от посещения кино, театров, музеев и концертов, прослушивания звукозаписей, туристических поездок и многое другое.

В наше время информация систематически распространяется через средства массовой информации (СМИ) - печать, радио, телевидение, кино, звукозапись, видеозапись - с целью утверждения духовных ценностей данного общества и оказания идеологического, политического, экономического или организационного воздействия на оценки, мнения и поведение людей. При этом используются реклама, агитация и пропаганда.

Труд первобытного человека был очень тяжел, инструментов еще почти не было. Руки и глаза во время работы заняты: ведь физическую работу выполняют руками и все время смотрят на предметы труда. Для понимания мимики и жестов нужно видеть друг друга, а жестикулируют в основном руками. Звуковая речь служит для выражения и передачи мыслей. Но при этом она не отвлекает руки и глаза человека от труда. Ведь переговариваться с помощью звуков можно, не глядя друг на друга. Так возник звуковой канал передачи информации в процессах труда и общения людей между собой.

Речь участвует не только в передаче сведений от одного человека собеседникам, но и во всех сознательных процессах самого человека. Каждый из нас мыслит с помощью речи, словами, только не произносит их вслух. Даже когда мы молчим, мы говорим сами с собой, мыслим не только образами, но и словами. Воспринимаемые нами предметы в своем сознании мы называем словами-понятиями: стол, стул, небо, земля, утро, день, вечер, ночь. Считаем в уме мы тоже с помощью слов, обозначающих числа и вычисления: один, два, три, четыре, сложить, вычесть, умножить, разделить. Например: девять умножить на три равно двадцати семи, говорим мы "в уме".

Зрительные, звуковые и другие впечатления человек запоминает в виде образов, а смысловую информацию - в виде слов. Чем раньше человек научится говорить, тем больше у него сохранится ранних детских воспоминаний.

Итак, речь представляет собой самую древнюю природную информационную технологию, которой каждый человек овладевает в самые первые годы после появления на свет. Для сознательных процессов в мозгу каждого человека эта технология является внутренней, а для передачи своих мыслей другим - внешней.

Формирование речи объяснил в физиологии И.П. Павлов (рис. 1.1), который разработал учение о сигнальных системах.


Рис. 1.1.  И.П. Павлов (1840-1936)

Сигнальные системы условно-рефлекторных связей формируются в коре больших полушарий головного мозга животных и человека при поступлении импульсов от внешних и внутренних раздражителей.

Первая сигнальная система формируется при воздействии конкретных раздражителей - света, звука, боли, запаха и др. Она является формой непосредственного отражения действительности в виде ощущений и восприятия.

Вторая сигнальная система, присущая только человеку, формируется при воздействии речевых сигналов, то есть не непосредственных раздражителей, а их словесного обозначения. Вторая сигнальная система образуется на базе первой сигнальной системы в процессе общения между людьми и, первоначально, между ребенком и его родителями и близкими.

Понятие о второй сигнальной системе И.П. Павлов ввел в 1932 году.

Другое мнение высказал выдающийся физиолог Н.А. Бернштейн: "Слова как сигналы не образуют никакой особой системы и в роли пусковых фонем (звуковых единиц языка - Прим. авт.) полностью доступны многим животным, еще чрезвычайно далеким от функции речи. Слова и речь как отражение внешнего мира в его статике (имена) и динамике действий и взаимодействий с субъектом (глаголы, суждения) действительно образуют систему, доступную и свойственную только человеку".

Критикуя предложенное И.П. Павловым понятие второй сигнальной системы, он уточнил понятие мышления как высшей ступени познания, присущее только человеку и отличающее его от животного мира. Действительно, животные, не обладающие речью и мышлением, понимают звуковые словесные команды-сигналы и хорошо дрессируются с их помощью.

А как передать мысли, сообщения, свой опыт людям, находящимся далеко от тебя, а тем более потомкам? Речь закреплялась сначала в памяти человека и передавалась устно из поколения в поколение, а затем возникла письменность - знаковая система фиксации речи. Она позволила закреплять мысли во времени и передавать их на расстояние с помощью графических элементов - письмен.

С возникновением письменности стало возможным передавать информацию не только устно или жестами. Умение читать и выражать свои мысли в письменной форме стало признаком грамотности людей. Она дала возможность не только передавать сведения и сообщения, но и накапливать человеческие знания в форме рукописей и рукописных книг и тем самым передавать произведения человеческой мысли от одного поколения к другому. Изобретение печатных станков в XV веке открыло возможность издания и широкого распространения книг. Массовое издание книг и учебников, открытие публичных библиотек создали условия для достижения всеобщей грамотности и развития культуры.

Письмена - это графические знаки, придуманные людьми для того, чтобы запечатлеть и передать свои мысли. Зачатки письма - зарубки и метки, бирки, узелки на веревках, бусы, раковины.

Древнейший способ письма - это пиктография: фиксация и передача мыслей с помощью картинок, изображения предметов. Следующий по времени способ - идеография: передача мыслей с помощью условных знаков. Однако таких знаков слишком много. Так, в китайской письменности насчитывается до 40000 иероглифов.

Наиболее удобным стало алфавитное письмо, в котором знаками - буквами передаются не сами предметы мысли, а слова, обозначающие мысли. При этом буквами могут обозначаться как слоги речи, так и ее отдельные звуки. Алфавитное письмо возникло позднее других письмен.

Иероглифы (рис. 1.2) - древние рисуночные знаки египетского письма - были смешанными. В них некоторые знаки, идеограммы, обозначали понятия, а другие были алфавитными. Клинопись (рис. 1.3) - это письменность в древнем Шумере (государстве в междуречье Тигра и Евфрата), знаки которой состояли из групп клинообразных черточек, выдавленных на глиняных табличках. Она была сначала идеографическим письмом, а затем превратилась в словесно-слоговое письмо.


Рис. 1.2.  Иероглифы


Рис. 1.3.  Ассиро-вавилонская клинопись

Алфавит - это система письменных знаков - букв - для передачи звуков речи на данном языке. Назван по первым двум буквам греческого алфавита - "альфа" и "бета".

Древнейшим считается алфавит финикийских надписей (около 1200 лет до н. э.). Алфавит стал значительным упрощением письма, которого требовали нужды развивавшейся торговли. Этим и объясняется его первое появление у торговых народов Финикии и Крита. Финикийский алфавит дал начало семитическим алфавитам - арамейскому, затем еврейскому и аравийскому, армянскому, грузинскому и индийскому. Вместе с исламом аравийский алфавит был воспринят большинством мусульманских народов. Древние греки также позаимствовали алфавит у финикиян, а от греческого алфавита ведут свое происхождение латинский алфавит и церковно-славянские глаголица и кириллица, ставшие основой современного русского алфавита из 33 букв.


Кириллица - это одна из двух (вместе с глаголицей) первых славянских азбук. Названа по имени славянского просветителя Кирилла. Создана на основе греческого алфавита в конце IX - начале X веков с добавлением нескольких букв. Была распространена у южных, восточных и, вероятно, западных славян. В 1708 г. в России при Петре Первом реформирована и превращена в гражданский шрифт. Легла в основу русского алфавита, существующего в современном виде с 1918 года.

Глаголица, одна из двух славянских азбук, от кириллицы отличается формой букв. Предположительно создана Кириллом и Мефодием в IX веке. Была распространена в X-XI веках в Болгарии и Моравии, в Хорватии существовала до конца XVIII века.

Кирилл (около 829-869 гг.) и Мефодий (около 815-885 гг.) - братья из Солуни (Салоники), христианские миссионеры у славян, славянские просветители, создатели славянской азбуки, первых памятников славянской письменности и старославянского литературного языка. Перевели с греческого на старославянский язык основные богослужебные книги.

В буквенно-звуковом письме применяются алфавит - набор букв, передающих все звуки речи на данном языке, орфография - правила написания отдельных слов и пунктуация - знаки препинания и правила их применения.

К письменности относится и современная стенография со своим своеобразным алфавитом - системой знаков и приемов быстрой записи устной речи. Быстрота записи в ней достигается благодаря простоте знаков, их связности и обилию сокращений.

Человек не может жить без общения с современниками, предками и потомками. От предков он заимствует опыт их жизни. С современниками он общается, обмениваясь с ними информацией. Потомкам передает свой жизненный опыт, результаты своих трудов. В этом сказывается его желание преодолеть конечность своей жизни, победить время, в какой-то мере обессмертить себя. С окружающими его людьми возможен прямой контакт, зрительный и речевой. А как быть с предками, потомками и людьми, находящимися далеко от него? Как записать и передать информацию? Только с помощью носителей информации и средств связи.

Самым древним носителем информации был, несомненно, самый долговечный материал - камень. Именно с его помощью до нас дошли наскальные рисунки древних людей, их статуи и статуэтки, древние письмена (рис. 1.4).


Рис. 1.4.  Наскальный рисунок

По библейскому преданию бог вручил Моисею каменные доски с 10 заповедями - "скрижали".

В 1901-1902 гг. французские археологи при раскопках древнего города Сузы обнаружили столб из черного базальта с рельефными мужскими фигурами и клинообразными знаками. При их расшифровке оказалось, что на столбе записаны законы вавилонского царя Хаммурапи, правившего с 1792 по 1750 гг. до нашей эры (рис. 1.5).


Рис. 1.5.  Каменный столб с законами Хаммурапи

В качестве носителей информации использовались самые различные материалы - бронза, глиняные таблички, береста (рис. 1.6), папирус, выделанная кожа - пергамент (или пергамен, от названия города Пергам, где он впервые был изготовлен) и, наконец, бумага.


Рис. 1.6.  Берестяная грамота

Берестяные грамоты - это древнерусские письма и документы XI-XV веков, процарапанные на березовой коре (бересте). Первые такие грамоты были найдены во время археологических раскопок в Великом Новгороде в 1951 году. К настоящему времени в Новгороде, Смоленске, Старой Руссе, Пскове, Витебске, Твери, Москве найдено около 20000 берестяных грамот.

Первым листовым материалом стал папирус, который в древнем Египте делали из тростника. Он хорошо воспринимает краску, тонок, но ломок. Сгибать его нельзя, поэтому куски папируса склеивали между собой и сворачивали в свиток. Это одна из древнейших форм книги - узкая полоса папируса, пергамента или бумаги, свернутая в трубку.

При чтении нужно все время разворачивать один конец свитка и сворачивать другой. Для того чтобы при чтении вернуться к какому-нибудь месту свитка, его нужно снова перематывать. К тому же писали только на одной стороне свитка, а другая его сторона при этом не использовалась. Свитки папируса просуществовали около трех тысячелетий, и только во втором веке до нашей эры появились книги, состоящие из скрепленных между собой листов пергамента - кодексы. Главное их достоинство по сравнению со свитками состоит в том, что их можно сразу открыть на любой странице и листать, а писать можно на обеих сторонах каждого листа.

Еще в древнем Риме были изобретены восковые книжечки - кодексы, состоявшие из табличек-дощечек с заполненной воском выемкой. Писали на них, а вернее, царапали с помощью стальной палочки - стиля. Один конец стиля был заостренным, а другой - закругленным. Острым концом писали, а закругленным концом сглаживали ранее написанное. Таким образом, на каждой восковой табличке можно было писать на одном месте много раз, например, письма, расписки, черновики. Поэтому они были дешевле пергамена, а потом и бумаги. Восковые книжечки-таблички просуществовали до начала XIX века. До наших дней сохранилось очень мало римских табличек. Большую их часть нашли при раскопках Помпеи (рис. 1.7).


Рис. 1.7.  Восковая книжечка-кодекс

Но свитки наряду с книгами просуществовали на протяжении многих столетий. Например, Тора - древнееврейские списки Пятикнижия Моисея - и в наши дни имеет вид свитка (рис. 1.8).


Рис. 1.8.  Свиток Торы

2000 лет назад, когда греки и римляне еще писали на свитках египетского папируса, китайцы уже научились делать бумагу из волокон бамбука и старого тряпья.

Письмена наносились на глиняные дощечки в виде клинописи, на папирус - в виде иероглифов, на пергамент и бумагу - в виде букв и цифр, а в Китае, Японии и Корее - и до нашего времени в виде иероглифов. Именно бумага дошла до нашего времени в качестве носителя информации - в виде книг, газет и журналов (рис. 1.9, 1.10).


Рис. 1.9.  Средневековый рукописный фолиант


Рис. 1.10.  Книга, газета, журнал

Какими же инструментами писали на различных материалах для письма? На сырых глиняных плитках писец писал, а вернее, чертил трехгранной заостренной палочкой, вдавливая ее в глину. После этого плитку обжигали для прочности и долговечности. Эти глиняные таблички с клинописью и дошли до нашего времени (рис. 1.11).


Рис. 1.11.  Глиняная табличка с клинописью

На папирусе писали чернилами - разведенной в воде сажей, к которой добавляли клей гуммиарабик. Пишущим инструментом служило тростниковое перо, заостренное и расщепленное на конце. По этому каналу-расщеплению чернила стекали тонкой струйкой на лист папируса. На пергаменте, а затем и на бумаге писали уже с помощью птичьих перьев (гусиных или вороньих) чернилами из сока чернильных орешков, железного купороса и гуммиарабика. Эти чернила впитывались в кожу и не смывались, их можно было только соскоблить. На бумаге также писали гусиными перьями, которые нужно было предварительно срезать наискось, заострять и расщеплять с помощью перочинного ножа.

Первое стальное перо появилось в Германии в 1748 году, но оно еще не имело прорези, и от него летели брызги чернил. В 1792 году англичанин Д. Перри сделал продольную прорезь в острие пера. Это значительно улучшило качество письма и долговечность пера. В 1826 году Мазон разработал станок для штамповки стальных перьев, что способствовало их массовому распространению. После этого они вытеснили гусиные перья, просуществовавшие около тысячи лет. Еще в 1930-1940-е годы в школах писали 86-м стальным пером, позволявшим писать красивым почерком "с нажимом".

Карандаш появился в конце XVIII века. Чешский изобретатель Йозеф Гартмут первым смешал графит с глиной. Независимо от него француз Ж. Конте в 1790 году сделал карандаш в виде тонкой палочки из смеси графитового порошка и глины, уложенной между двумя дощечками. Уже во второй половине XX века нашли широкое применение автоматические ручки, сначала с баллончиком чернил, а затем шариковые со сменным стержнем, который содержит пасту и пишущий узел с шариком на конце. Позднее появились и самые различные фломастеры и маркеры с пористым пишущим стержнем, пропитанным красящей жидкостью на спиртовой или нитрооснове.

<

Книгопечатание


В средние века развитие торговли вызвало спрос на книги. Однако рукописные книги были слишком редки и дороги и не могли удовлетворить этот спрос. Нужда в книгах, которые можно было бы изготовлять целыми тиражами, привела к изобретению книгопечатания.

Книгопечатание - это комплекс производственных процессов, необходимых для изготовления печатной книги, журнала, газеты или листовки. Термин "книгопечатание" используется при описании книжного дела прошлых столетий. В наше время этот термин заменили другие - полиграфия, полиграфическое производство, полиграфическая промышленность. Сущность полиграфического процесса состоит в формировании красочного слоя на печатной форме, аналогичного какому-либо тексту или рисунку, и его передаче на бумагу. Исходными материалами для этого процесса служат краска и листы бумаги.

До недавнего времени в основе техники печатания всегда лежал принцип давления, с помощью которого получали многочисленные одинаковые оттиски с одной печатной формы.

Принцип давления в книгопечатании был позаимствован с тиснения (с помощью печатей-штампов) оттисков на расплавленном сургуче, чеканки монет - металлических денег и тиснения на кожаных книжных переплетах.

Сначала печатали книги с целых деревянных досок, на которых вырезался рельефный текст. Первая такая ксилографическая книга появилась в Корее в IX веке. Опыты книгопечатания в Китае предпринял Би Шэн в 1041-1048 годах. Но деревянные доски для всех страниц любой новой книги приходилось делать заново.

В 1438 году Иоганн Гутенберг (рис. 2.1) сделал первые оттиски с наборных литер.


Рис. 2.1.  Иоганн Гутенберг

По существу, Гутенберг пошел по пути создателей алфавитов: ведь набор букв-литер позволяет зафиксировать на бумаге все звуки речи на данном языке, причем не один раз, а многократно.

До Гутенберга все книги были рукописными. Это были либо Библии, либо комментарии к ним. Переписывали их монахи, которые на изготовление только одного текста затрачивали несколько лет. Принадлежали книги в основном духовенству.

Гутенберг на подготовку первого печатного набора Библии потратил около двух лет. Но зато после этого он смог сразу напечатать целый ее тираж.

Ее 1300-страничный оригинал назван "42-строчной" Библией потому, что размер ее страниц - 42 строки. Гутенберг отлил 290 различных литер. Позднее художник-иллюстратор добавил цветные буквицы и иллюстрации (рис. 2.2). С помощью изобретенного им печатного пресса Гутенберг за три года напечатал 180 экземпляров своей Библии. Помогали ему 20 подмастерьев. Писцам в монастырях требовалось больше времени, чтобы переписать вручную всего один экземпляр.


Рис. 2.2.  Первая страница Библии Гутенберга, 1464 г.

Тем самым Гутенберг значительно ускорил и удешевил изготовление книг. Профессия переписчиков рукописных книг с этого времени постепенно исчезла.

Появление доступных печатных книг сделало грамотность насущной потребностью множества людей. Это вызвало целую революцию в образовании. До Гутенберга в Европе было всего около 30.000 рукописных Библий, а к началу XVI века появилось более 9 000 000 печатных книг не только на религиозные, но и на самые разнообразные темы науки, литературы, искусства, политики. В результате к книгам и другой печатной информации получило доступ все общество, а не только служители церкви.

Печатная книга стала первым в истории средством массовой информации, позволившим передавать знания и опыт из поколения в поколение, причем в доступном, долговечном и достаточно компактном виде.

Сначала литеры были деревянными и выдерживали малое количество оттисков. Позднее Гутенберг изобрел пуансоны - стальные бруски с выгравированным рельефным изображением буквы или знака. С их помощью он выдавливал в меди матрицы - формы для отливки металлических литер. Он же изобрел и гарт - сплав свинца, олова и сурьмы, из которого эти металлические литеры отливались. Этот процесс горячего набора просуществовал до середины XX века.

Готовые литеры с выпуклыми изображениями букв располагались в систематическом порядке в ячейках наборной кассы. Из этих литер с помощью линейки с бортами (верстатки) набирали строка за строкой любой текст. Металлические литеры быстро набирались и разбирались и могли многократно использоваться для печатания разных книг.

Каждый оттиск Гутенберг делал с помощью винтового печатного пресса (рис. 2.3). Такой ручной станок был достаточно примитивным и медленно работающим. Листы небольшого формата печатались на нем с одной стороны тиражом не более 300 оттисков в день. С небольшими усовершенствованиями он просуществовал до начала XIX века.


Рис. 2.3.  Винтовой печатный пресс

Гутенберг Иоганн (около 1394-1468), золотых дел мастер из Майнца (Германия) - изобретатель книгопечатания. Он изобрел печать с наборных литер, инструмент для их отливки, типографский сплав (гарт) и печатный пресс.

В изданиях И. Гутенберга иллюстрации в каждом экземпляре исполнены от руки. Типографское воспроизведение орнамента в книге, отпечатанной с набора, было выполнено немецким печатником П. Шёффером в 1457 году на страницах Майнцской псалтыри. В 1461 году в Бамберге типограф А. Пфистер выпустил первые книги с гравированными на дереве иллюстрациями. Однако текст и иллюстрации были напечатаны отдельно друг от друга: текст - с наборной формы, а иллюстрации - с гравированных досок. При этом иллюстрации были вынесены на отдельные листы. Но в следующем издании 1461 года иллюстрации уже были введены в текст. Так появилась новая производственная операция в процессе изготовления печатной формы, получившая позднее название верстки. Она позволила сочетать на одной странице текст и иллюстрации.

Нотопечатание, то есть воспроизведение музыкальных текстов с помощью нотных знаков, начали воспроизводить с помощью гравюры на дереве в 1476 году. В середине XVIII века нотные тексты начали печатать типографским способом с наборных форм.

Наряду с гравюрами на дереве для иллюстраций в книге уже в последней четверти XV века начали использовать углубленную гравюру на меди, сделанную гравером с помощью резца. В печатных книгах ее впервые применил английский первопечатник Уильям Кэкстон.

Для получения оттиска иллюстрации с медной формы глубокой печати требуется значительно большее усилие, чем в высокой печати. И тогда был изобретен стан, в котором давление на бумагу передавалось по линии с помощью стального вала, а не по всей плоскости, как в типографском стане высокой печати.

Изготовление гравюры по металлу с помощью резца требует от гравера больших физических усилий. Значительно облегчить работу гравера позволил офорт, изобретенный оружейным мастером Даниелем Хопфером в начале XV века. При создании офорта медную (а в наше время цинковую) пластину покрывают специальным лаком, защищающим ее поверхность от действия кислоты. По слою лака гравер острой иглой процарапывает рисунок. В местах, где игла процарапала слой лака, обнажается поверхность металлической пластины. При обработке поверхности кислотой обнаженные участки пластины будут протравлены. В них образуются углубленные печатающие элементы, которые можно заполнить краской и получить оттиск на бумаге.

Книгопечатание быстро распространилось в Европе. В Москве оно появилось в середине XVI века. Первая так называемая анонимная типография в Москве возникла в 1553 году, а в 1563 году в ней открылась первая государственная типография, в которой работали Иван Федоров и Петр Мстиславец. В марте 1564 года они отпечатали первую русскую печатную книгу - "Апостол". В дальнейшем Федоров и Мстиславец уехали сначала в Великое княжество Литовское, а затем Федоров работал на Украине, во Львове и Остроге, а Мстиславец - в Вильне. В Москве продолжали печатное дело их ученики.

В 1798 году Алоиз Зенефельд изобрел литографию - способ плоской печати, при котором печатной формой служит поверхность камня (известняка). Изображение на литографский камень наносят жирной литографской тушью или литографским карандашом. Литография, допускающая широкое тиражирование, в XIX веке получила распространение в графике. В ХХ веке литография вытесняется из полиграфии офсетом, но сохранила значение для выполнения художественных гравюр - эстампов.

В 1810-1812 годах Фридрих Кёниг (1774-1833) (рис. 2.4) изобрел скоропечатную машину с металлическим цилиндром, давящим на плоскую наборную форму, которая совершала возвратно-поступательные движения (рис. 2.5).


Рис. 2.4.  Фридрих Кенинг


Рис. 2.5.  Скоропечатная машина Кенинга

На такой плоскопечатной машине можно было печатать до 1000 оттисков в час с обеих сторон листа. При этом формат листа можно было увеличить и расположить на нем сразу 6 или 12 страниц. Наборная форма смазывалась типографской краской, затем на нее помещали чистый лист бумаги, по которому прокатывали металлический цилиндр, оттискивавший на ней отпечаток. При этом цилиндр соприкасался с листом бумаги только по образующей поверхности, представляющей собой прямую линию. Это позволило значительно уменьшить усилие давления на бумагу, в отличие от винтового пресса, в котором давление приходилось осуществлять сразу по всей площади бумажного листа. Во всех последующих печатных машинах давление на бумагу осуществляется только с помощью цилиндра.

Промышленная революция в книгопечатании связана с созданием скоропечатной печатной машины Ф. Кёнига. 29 ноября 1814 г. на этой машине впервые был отпечатан номер газеты "Таймс" (Лондон).

В 1865 году была изобретена ротационная печатная машина, в которой печатная форма размещается на непрерывно вращающемся цилиндре (рис. 2.6). Ротация во много раз ускоряет процесс печати. Бумага подается в ротационную машину либо последовательно отдельными листами (в так называемых листовых ротациях), либо непрерывно с катушки - роля (в так называемых ролевых ротациях).


Рис. 2.6.  Ротационная печатная машина

Со времени изобретения книгопечатания до конца XX века его основные процессы оставались неизменными. Для получения оттисков необходимо было иметь печатную форму, материал для печатания (чаще всего бумагу) и печатную краску. Без печатной формы невозможно было напечатать целый тираж книг, журналов или газет.

Печатные формы бывают трех видов: с выпуклыми или углубленными печатающими элементами, а также с ровной плоской поверхностью. По этим трем типам печатной формы различают три основных вида печати: высокую, глубокую и плоскую (рис. 2.7).


Рис. 2.7.  Виды печати. А. Высокая печать; Б. Глубокая печать; В. Плоская (офсетная) печать

Высокая печать, при которой оттиск получается с формы, имеющей выступающие (печатающие) и углубленные (пробельные) элементы (рисунок), была единственной формой печати со времен Гутенберга до конца ХIХ века. Она употребляется для печатания текстовых изданий (брошюры, книги, газеты и пр.).

Глубокая ракельная печать, при которой печатающие элементы углублены, была изобретена К. Кличем в 1890 г. Краска снимается с пробельных участков стальной линейкой-ракелем и остается в печатных ячейках разной глубины. Глубокая печать хорошо передает полутона. Обычно применяется для печатания иллюстрированных журналов, фотоальбомов, портретов. Уже в ХХ веке она стала одним из основных видов печати многотиражных иллюстрированных журналов.

Плоская печать - один из основных видов печати, при котором печатающие и пробельные элементы формы находятся в одной плоскости. В результате специальной химической обработки на печатающие элементы формы наносится краска (жир), а увлажненные пробельные элементы не принимают ее.

Наиболее распространенной и прогрессивной разновидностью плоской печати является офсетная печать, в которой краска, нанесенная на печатную форму, передается сначала на резиновый валик, а с него на бумагу. Первые офсетные печатные машины создали А.У. Рубел (США) и К. Герман (Германия) в 1905-1907 гг.

Традиционный полиграфический процесс имеет много стадий. Сначала нужно провести редакционную подготовку текста и иллюстраций; затем изготовить печатные формы - текстовые (наборные), иллюстрационные и смешанные (когда на одной печатной форме располагают и текст, и иллюстрации); после этого нужно получить оттиски с печатных форм; в заключение следуют отделочные (или брошюровочно-переплетные) процессы, завершающие изготовление печатной продукции. Ведь полученные оттиски сначала нужно сфальцевать - то есть сложить в тетради, затем подобрать все книжные тетради книги по порядку на листоподборочной машине, скрепить между собой (сшить или склеить), обрезать по трем сторонам и уложить в твердый или мягкий переплет.

Совершенствование иллюстрационных процессов в XIX в. шло по пути создания фотомеханических способов репродуцирования - фототипии, цинкографии, автотипии, растровой глубокой печати. При этом использовались достижения в химии, электротехнике, фотографии.

Малопроизводительный и дорогой ручной набор просуществовал почти до конца ХIХ века. В 1886 году О. Мергенталер (рис. 2.8) изобрел наборную машину-линотип, дававшую набор в виде отдельных отлитых строк (рис. 2.9). А в 1892 году Т. Ланстон (рис. 2.10) изобрел монотип, на котором набирается отдельно каждая буква-литера (рис.2.11). Обе эти машины были машинами горячего набора. Лишь к концу XX века горячий набор был вытеснен сначала так называемым фотонабором, а затем и электронным набором.


Рис. 2.8.  О. Мергенталер


Рис. 2.9.  Линотип


Рис. 2.10.  Т. Ланстон


Рис. 2.11.  Клавиатурный (наборный) аппарат монотипа

Идея фотографического набора выдвинута в 1894 г. венгерским изобретателем Е. Порцельтом. Первую фотонаборную машину построил в 1895 г. В. А. Гассиев.

В конце XIX в. начинается разработка и внедрение в полиграфическое производство наборных и брошюровочно-переплетных машин - бумагорезальных, листоподборочных, фальцевальных, ниткошвейных, крышкоделательных и др.

XX век стал в книгопечатании периодом перехода от машин, механизирующих отдельные производственные операции, к автоматизированным поточным линиям. В начале века полиграфические машины переводятся на электрический привод. В 30-40-х гг. появляются электрические контрольно-блокирующие и измерительные устройства. В 50-60-х гг. в книгопечатании начинает применяться электроника. Электронные счетно-решающие устройства произвели настоящую революцию в наборной технике. Фотоэлектроника рационализировала процессы изготовления иллюстрационных форм, цветокорректуру и цветоделение. Появились электрические способы формирования изображения. Развиваются бесконтактные электрические способы переноса красочного изображения. Широкое применение находят синтетические материалы - от фотополимерных печатных форм до пластмассовых переплетных крышек.

Успехи современной электроники, электрофотографии и цифровой вычислительной техники позволили коренным образом усовершенствовать все процессы полиграфического производства.

Раньше редакционный процесс состоял из множества последовательных стадий. Сначала автор от руки писал и правил свою рукопись на бумаге. Затем он отдавал ее машинистке для печати на пишущей машинке. В лучшем случае автор самостоятельно печатал на машинке свою рукопись. Затем он отдавал отпечатанную рукопись в редакцию. Там редактор правил рукопись и согласовывал свою правку с автором, а редакционные машинистки многократно ее перепечатывали. Отредактированную рукопись отдавали в набор и с него печатали гранки - длинные пробные полосы. Отдельно готовили иллюстрации и верстали их с текстом. Гранки давали читать и править автору, после которого они попадали в руки корректора. На всех этих подготовительных этапах тратилось огромное количество бумаги, да и времени. Только после этого делались печатные формы и начинался печатный процесс.

Появление персонального компьютера коренным образом упростило и ускорило все эти процессы.

Теперь автор, набрав с помощью клавиатуры и мыши свой текст на компьютере, может переписать его на дискету, оптический диск или карту флэш-памяти и отнести ее в редакцию либо отправить текст по электронной почте. При этом надобность распечатывать текст на принтере отпадает.

Весь редакционный процесс теперь проводят на компьютере с помощью специальных редакторских программ. Они, в частности, позволяют проводить верстку (т.е. расположение по полосам и страницам) рукописи непосредственно на экране монитора компьютера. Для этого созданы так называемые настольные издательские системы обработки оригиналов.

При печати больших тиражей традиционно готовят печатные формы, а с них производят печать. Но за последние годы очень важным стал быстрый выпуск малыми тиражами многокрасочной продукции, например проспектов, каталогов или пригласительных билетов. Для решения этих задач в последнее десятилетие ХХ века были созданы цифровые печатные машины, которые позволяют избежать изготовления печатных форм и печатать тираж по командам компьютера, в памяти которого находится набираемый текст и иллюстрации. На таких машинах можно изготовлять продукцию тиражами от 1 до 1000 экземпляров в 4 краски (что в переводе с "типографского языка" означает возможность печати 16-цветных иллюстраций - путем смешения основных цветов). При этом в цифровых машинах есть еще одно замечательное свойство: в каждый экземпляр тиража можно внести уникальный текст или иллюстрацию. Предположим, нужно напечатать 200 приглашений. Обычно в каждый экземпляр отпечатанного приглашения от руки или на пишущей машинке вносят фамилию одного из пригла

шенных. При использовании цифровой печатной машины можно в каждый экземпляр внести фамилию и даже цветную фотографию приглашенного.

Еще одно преимущество цифровой печатной машины - она печатает последовательно все страницы книжного блока, поэтому листоподборки при цифровой печати не требуется: книги можно упаковывать и отправлять для продажи равномерно по мере изготовления тиража. В этом огромное преимущество всех цифровых типографий.

Таким образом, использование цифровых печатных машин обеспечивает необычайно высокую оперативность выполняемой работы.

Цифровые технологии в полиграфии дали возможность создавать "карманные" цифровые типографии. Для такой типографии не нужны специальные цеха. Достаточно нескольких квадратных метров офиса и усилий всего одного оператора - офисного служащего. Такой комплекс годится для производства книг различного формата в полноцветной красочной обложке, в "мягком" клеевом переплете.

Печать книжных блоков производится на цифровой печатной машине, способной делать 4500 оттисков в час, выдавая стопу готовых книжных блоков. Полноцветные обложки для книг печатаются на другой цифровой печатной машине со скоростью 720 оттисков в час. Она хорошо согласована с печатью книжных блоков, поэтому простоев в ожидании обложки в цифровой типографии не бывает.

Такая цифровая типография позволяет выпустить тираж в 500 экземпляров книг за один рабочий день (8 часов) или 5 тиражей по 100 экземпляров за то же время.

Старейшему носителю информации - бумажной книге - уже многие сотни лет. Читатели привыкли к ней, собирают домашние библиотеки, часто занимающие целые комнаты. Существуют и звуковые издания на грампластинках и магнитофонных кассетах. Они нужны детям и людям с ослабленным зрением. Но на них можно разместить лишь сравнительно короткие произведения - сказки, стихотворения и рассказы. "Война и мир" на них не поместится.

Цифровая революция, происходящая с начала ХХ века и в наши дни, решительно вторглась в издание книг. Она дала возможность размещать тексты практически любого объема с цветными иллюстрациями и звуковым сопровождением на электронных носителях - оптических дисках CD и DVD, картах флэш-памяти, винчестерах и др. Читать их можно на дисплеях персональных компьютеров, ноутбуков, карманных персональных компьютеров, смартфонов и др. Их можно пересылать по электронной почте.

Каковы основные преимущества электронных изданий перед бумажными?

Бумажная книга обычно содержит последовательный текст, в котором для облегчения поиска применяются оглавление и нумерация страниц; иногда имеется алфавитный указатель.

Электронный документ - книга или статья - может быть гипертекстом, в котором с помощью гиперссылок легко перейти к интересующей тематике. Многие системы просмотра электронных документов обеспечивают возможность поиска нужного материала по ключевым словам.

Бумажный документ трудно скопировать и еще труднее внести в него изменения. Пересылка бумажного документа - медленное и дорогостоящее перемещение материального объекта в пространстве, подобное пересылке письма или бандероли по обыкновенной почте.

Электронный документ легко копируется, изменяется и передается на большие расстояния почти мгновенно по электронной почте.

Это свойство дает возможность организовать торговлю электронными книгами через сеть Интернет. В отличие от торговли электронными книгами на оптических дисках CD и DVD, которые можно купить в магазине, в данном случае покупается только право "скачать" текст и иллюстрации через сеть Интернет.

В электронном издании (от англ. eBook - electronic Book), в отличие от бумажного, можно совместить разные виды информации: помимо текста и графики, в нем можно поместить движущееся видеоизображение и звук - все, что способен отобразить компьютер.

Может показаться, что век бумажной книги подходит к концу. Но не все так просто. Конечно, у электронных изданий колоссальные преимущества по сравнению с бумажными. Они занимают несоизмеримо меньше места (ведь на одном CD-диске можно разместить сотни книг). Электронные книги гораздо легче, быстрее и дешевле издавать даже с цветными иллюстрациями.

В них можно менять при чтении тип, размер и цвет шрифта, искать слова и многое другое. Но есть и серьезный недостаток. Ведь бумажную книгу можно читать при отраженном свете дневного или вечернего электрического освещения. А электронные книги приходится читать с экранов излучающих дисплеев - электронно-лучевых или чаще всего жидкокристаллических. Такое чтение гораздо более утомительно для зрения, чем чтение бумажной книги. К тому же оно практически невозможно при падающем на экран солнечном свете. Правда, надежду дает разработанная "электронная" бумага, позволяющая читать при отраженном свете, но она еще ждет широкого внедрения.

Таким образом, бумажная книга, вопреки прогнозам, в ближайшее время "умирать" не собирается, но со временем электронные издания могут составить ей серьезную конкуренцию. Так, в области справочных изданий - словарей, энциклопедий, справочников, электронные издания уже серьезно потеснили бумажные: не только из-за более быстрого производства, низкой цены и занимаемого ими объема. Главное их достоинство - гораздо более легкий и быстрый поиск нужного материала, экономящий время читателя.

Что касается художественной литературы, то здесь успехи электронных изданий значительно более скромны. Однако в сети Интернет существует множество электронных библиотек, в том числе и бесплатных. В вагонах метро уже довольно часто можно видеть людей, читающих на экранах карманных персональных компьютеров и смартфонов тексты, скачанные из Интернета.

Особую нишу занимают "говорящие" книги на электронных носителях. Они воспринимаются на слух как радиопередачи. Слушая их, можно заниматься домашним хозяйством, рисовать или лепить. Ведь зрение человека при их прослушивании свободно. Оно либо отдыхает при этом, либо используется по другому назначению, например для рисования. Чтение звуковых книг обычно поручают профессиональным артистам, так что текст читаемой книги воспринимается еще и с интонациями, которые придает ему чтец-артист.

Одна цифровая "книга" может заменить целую библиотеку обыкновенных бумажных книг. Другое ее преимущество: возможность практически мгновенного поиска необходимой информации - отдельного слова или целой страницы. Это особенно важно для справочных изданий, энциклопедий и словарей.

Главный недостаток бумажной книги - невозможность внести изменения в текст после того, как она напечатана. Это наиболее важно для справочников и энциклопедий, которые устаревают, как только поступают в продажу.

Процессы издания и продажи новых текстов для электронных книг имеют огромные преимущества по сравнению с полиграфическими книгами. Подготовить текст к изданию можно за считанные дни, особенно если автор представляет его в издательство уже в "электронном" виде. Электронная книга не нуждается в печати тиража, брошюровке и переплете. А раз нет тиража, то не нужны и склады для его хранения, а, следовательно и затраты на них. И получить новый текст для своей электронной книги можно через всемирную сеть Интернет. Такая электронная книга не заменит полностью традиционную бумажную, но может серьезно "потеснить" ее в ближайшие годы.

Недавно появились электронные "книги" - планшеты. Это специальные компьютеры, предназначенные только для чтения. Их можно "листать" подобно бумажным книгам. Они имеют вид небольшого книжного томика и снабжены экраном с подсветкой, что позволяет читать их при ярком солнечном освещении на скамейке в парке и даже в постели (рис. 2.12).


Рис. 2.12.  Электронные книги-планшеты

По существу, они представляют собой специализированные компьютеры - планшеты для чтения, оснащенные электронной "памятью". Такая память дает возможность запоминать тысячи страниц текста, "стирать" их и запоминать новые. Однако следует заметить, что электронные книги-планшеты пока не пользуются широким спросом.

Аудиокниги или Audiobooks - это разнообразные литературные произведения, озвученные профессионалами жанра и записанные на CD-ROM. Их можно слушать где угодно: дома, в городском транспорте по дороге на работу, на прогулке или на утренней пробежке, в машине в автомобильных пробках. Чем заняться за рулем автомобиля? Ведь практически единственно свободный канал восприятия при этом - слух. Озвучание аудиокниг поручают опытным артистам-чтецам. Выпускаются аудиокниги самых различных жанров - от классики до детективов.

Таким образом, на наших глазах происходит постепенный отказ от бумаги - носителя информации, прослужившего человечеству тысячи лет. А ведь бумага - это лес, и хотя бы частичное уменьшение ее массового производства и применения приведет к улучшению экологии на нашей многострадальной планете.

<




История авиапочты


В начале XX века началось бурное развитие авиации. Первый аэроплан создали братья Райт, а 17 декабря 1903 года Орвилл Райт стал первым человеком, который пилотировал самолет в течении 12 секунд. А вскоре самолет превратился в транспортное средство. Это произошло 25 июля 1909 года, когда французский летчик Луи Блерио впервые в мире преодолел пролив Ла-Манш, разделяющий Францию и Англию.


Рис. 3.8.  Марка авиапочты США. Братья Райт

В феврале 1911 года в индийском городе Аллахабаде состоялась большая коммерческая выставка искусств и ремесел. Именно здесь впервые состоялись показательные полеты самолета, на борту которого были почтовые отправления.

18 февраля 1911 года биплан типа COMMER, который пилотировал А. Пике, поднялся на территории выставки и приземлился неподалеку от города Наини, где корреспонденция была передана почтовым чиновникам. Генеральный директор почт Объединенных провинций сэр Джефф Кларк и Генеральный директор почтовой службы Индии дали официальное разрешение на прием корреспонденции и ее гашение до погрузки в самолет. На почте, перевезенной самолетом (6500 писем и 250 специальных открыток), ставился специальный почтовый штемпель с надписью: "Первая воздушная почта. (Объединенная национальная выставка, Аллахабад, 1911)". На штемпеле было изображение самолета над горами. Клише штемпеля было уничтожено сразу же после полета. Так и родилась авиапочта. Один из конвертов авиапочты был направлен в адрес короля Англии Георга V, известного коллекционера почтовых марок.

В сентябре 1911 года английский король Георг V в честь своей коронации открыл авиапочтовую линию Лондон-Виндзор (34 километра). Состоялось несколько полетов с почтой. Перевозка почты самолетами была организована и в других странах.

Первая официальная марка авиапочты появилась в Италии в 1917 году. На марке спешной почты 1903 года была сделана надпечатка "Esperimento Posta Aerea Maggio 1917. Torino-Roma. Roma-Torino" (Экспериментальная авиационная почта, май 1917.
Турин-Рим. Рим-Турин).

В 1918 году в США для авиационной линии Вашингтон-Филадельфия-Нью-Йорк была выпущена серия из трех почтовых марок для авиапочты. На марке номиналом 24 цента изображение самолета оказалось перевернутым. Счастливцем, обнаружившим перевертку, оказался клерк вашингтонской биржи. В первый же день выпуска марки он купил на почте целый лист "дефектных" марок. Сейчас эта марка - одна из самых редких авиапочтовых марок.

В нашей стране сразу же после Октябрьской революции за организацию авиапочты взялся А.П. Онуфриев, назначенный комиссаром Управления морской авиации. Он был хорошо знаком с различными типами самолетов, не раз участвовал в полетах сам, пользовался авторитетом среди гражданских и военных летчиков. Благодаря энергии и настойчивости А.П. Онуфриева для перевозки почты были выделены четыре гидроплана типа М-9, изготовленные на заводе Щетинина. Сделать первый рейс из Петрограда в Москву согласились инструктор Ораниенбаумской авиашколы Бабенко и летчики Волков, Држанков и Кутьин. Этот первый официальный рейс по доставке авиапочты из Петрограда в Москву состоялся в марте 1918 года. Регулярная доставка авиапочты началась в 1923 году.


Рис. 3.9.  Первые марки авиапочты СССР

Регулярная авиапочта возникла в 1919 году, когда было установлено первое регулярное воздушное сообщение (почтовое и пассажирское) - на линиях Берлин-Веймар и Париж-Брюссель.

В наши дни существует экспресс-почта Federal Express (FedEx), которая доставляет за один день почтовые отправления весом до 32 кг и за два дня - весом до 68 кг в любую из 210 стран мира. На современных почтамтах письма обрабатывают на автоматических линиях: ставят на них штемпель и сортируют. При этом пункт, куда адресовано письмо, определяют по почтовому индексу. Его стандартные цифры мы пишем на конверте письма по специальному трафарету.


Пневмопочта


Главный недостаток почты по сравнению с другими средствами связи - сигнализацией, телеграфом, телефоном, радио - это необходимость пересылать письмо: в почтовой карете, на корабле, по железной дороге в почтовом вагоне или самолетом. Эта пересылка от отправителя получателю и составляет, в основном, достаточно длительное время доставки.

Однако существует разновидность почты - пневматическая, которая служит разумным дополнением традиционной почты.

Пневматическая почта (от греч. pneumatikos - воздушный) представляет собой транспорт для перемещения потоком воздуха по трубопроводам не только документов, но и мелких предметов, вложенных в патроны-капсулы. Действует она в пределах здания (например, предприятия связи) либо города (в Париже длина линий пневматической почты около 600 км). Средняя скорость патрона - до 160 км/ч.

В 1792 году сжатый воздух был впервые применен для передачи письменных сообщений по трубопроводу. Эта система была размещена в 50-метровой колокольне Венского собора Святого Стефана и просуществовала до 1855 г. Колокольня соединялась со сторожкой трубой, по которой письменное сообщение о замеченном городском пожаре пересылалось в специальном металлическом патроне.

Создание пневматической почты связано с именем Роуланда Хилла - одного из изобретателей почтовой марки. Он смоделировал систему подземных пневматических труб для ускорения пересылки письменных сообщений. Практически идея Р. Хилла была реализована в 1854 году, когда в Лондоне была запущена первая линия пневмопочты длиной 200 метров, для пересылки телеграмм от здания фондовой биржи в зал главного телеграфа. Пневмопочта с протяженностью трубопроводов 100 м была построена в Лондоне в 1858 году по проекту физика Кларка. В 1862 году была пущена еще одна линия пневмопочты между лондонским вокзалом Истон и почтамтом Кемпден. Эти линии работали не очень надежно, часто ломались и были вскоре закрыты. Однако пневматическая почта Лондона продолжала развиваться. По новому проекту инженера Джонсона были построены несколько новых линий, эксплуатация которых показала хорошие результаты.
Для примера, расстояние 300 метров шаровой патрон с почтой преодолевал за 11 секунд.

В 1892 году в США (Филадельфия) построили первую линию пневмопочты между зданиями биржи и главного почтамта. На доставку каждого патрона из главного почтамта на биржу (расстояние 0,5 англ. мили) затрачивалась 1 минута, а на обратный путь - 65 секунд. Пневмопочта в Филадельфии соединяла главный почтамт со станцией Пенсильванской железной дороги. Здесь расстояние в 1 милю преодолевалось за 1 минуту 25 секунд. Вскоре пневмопочта для доставки писем появились в Бостоне и в Нью-Йорке. Трубы диаметром 8 дюймов подведены к столам для штемпелевания и сортировки писем. Патроны вмещали 600 писем. Широко разветвленная сеть пневмопочты, созданная в Нью-Йорке, соединяла главный почтамт и почтовые отделения. Протяженность наибольшего участка составляла 5600 метров, которые почта проходила за 7 минут. Ежедневно по трубам пересылали до 3 тонн корреспонденции.

В Германии первая линия пневмопочты открылась в 1865 году (Берлин). Уже в 1875 году существовала целая сеть пневмопочты, соединявшая 15 почтовых отделений, находившихся в разных концах города. Самый длинный участок протяженностью 12 километров контейнеры с почтой преодолевали за 35 минут.

Существовала пневмопочта в Италии, Франции и Австрии. В России пневматическая почта смонтирована на некоторых почтамтах Москвы и Санкт-Петербурга. Однако она применяется для перемещения корреспонденции только внутри почтамта.

При управлении самыми различными производствами требуется передать огромный объем информации, в том числе в письменной форме. Задержка в передаче этой информации может серьезно нарушить производственные процессы, привести к ухудшению качества производимой продукции и авариям. Но передавать нужно не только письма, но и мелкие предметы. Примером может служить пересылка образцов плавки в экспресс-лабораторию, которая на крупных металлургических заводах удалена от цехов на значительное расстояние. Вот в таких случаях пневмопочта незаменима.


Она позволяет обеспечить доставку проб с большой скоростью за минимальное время. С ее помощью пересылают письменные сообщения, деловые бумаги, чертежи, истории болезней, пленки, мелкие детали, лабораторные пробы, продукты питания в упаковке, лекарства.

Пневматическая почта используется на почтамтах, телеграфах, в редакциях и типографиях, больницах, библиотеках, аэропортах, торговых предприятиях, банках, на металлургических, химических и пищевых предприятиях, а также для внешнего сообщения различных предприятий между собой.

В развитых странах Европы и Америки пневматическая почта используется с середины XIX века и к настоящему времени широко развита. Применяется она и в нашей стране, например в крупнейшем в СССР сортировочном почтамте при Казанском вокзале в Москве.

В Праге работает пневмопочта, по которой передают письма, телеграммы, периодические издания. Передача телеграммы из почтового отделения на центральный почтамт происходит всего за пять минут. Первый участок пневмопочты в Праге открылся в 1899 г. Протяженность трубопроводов составляла всего несколько десятков метров. Но уже к началу 1930-х годов была сформирована разветвленная сеть подземных труб, охватывающая все районы города. У Пражской пневмопочты 46 абонентов - банки, крупнейшие предприятия и внешнеторговые организации, редакции центральных газет, телевидения, телеграфное агентство и 30 почтовых отделений. Все абоненты связаны подземными трубопроводами с центральным почтамтом, где размещена центральная диспетчерская и воздуходувная установка. Каждый из 46 абонентов связан друг с другом. Всего возможны 1035 вариантов связи между ними. За год по пражской пневмопочте отправляется 1,1 млн телеграмм. Они транспортируются в алюминиевых патронах массой 400 г, диаметром 57 мм и длиной 260-280 мм. Один патрон вмещает почту массой 600 г. Каждый месяц по пневмопочте отправляют 35000 патронов со счетами, телеграммами, письмами, газетами и журналами. Трубы пневмопочты диаметром 65 мм уложены под землей на глубине 80-100 см.


Почтовые автомобили в часы пик могут двигаться в Праге со скоростью не больше 20 км/ч, а для патронов пневмопочты часов пик просто не существует. Они "бегут" по трубам со скоростью 34 км/ч. В настоящее время под Прагой проложено почти 60 км трубопровода, пересекающего в трех местах Влтаву. Он связывает 12 почтамтов и два пражских банка. Сейчас ведется восстановление пневматической почты Чешского национального банка. Металлические почтовые футляры закрываются силиконовой пробкой и приводятся в движение сжатым воздухом из воздуходувных машин в машинном зале подземелья Главпочтамта на Йиндржишской улице. Механизмы Пражской пневмопочты обслуживают 5 человек.

Интересно отметить, что в самолете ДВ-2 "Родина", на котором в 1938 году советские летчицы В. Гризодубова, П. Осипенко и М. Раскова установили мировой рекорд дальности полета, также была применена пневмопочта. Все три летчицы, размещавшиеся в разных кабинах, были соединены внутренней связью - телефоном и пневмопочтой.

Несмотря на широкое применение средств электронной передачи информации, оборот оригинальных документов и наличных денег сохраняется в организациях самого различного профиля. Не каждое предприятие имеет возможность перейти на электронный документооборот.

Пневмопочта - это простой и эффективный, а иногда и самый дешевый способ ускорить передачу оригинальных документов. Благодаря пневмопочте персонал может больше времени уделять своим прямым обязанностям, не тратя время на лифты и коридоры.

В современных условиях пневматическая система является дополнением к электронным средствам передачи информации.

Пневмопочта призвана решать проблему "узких мест" на предприятии, эффективно объединяя различные подразделения фирмы, такие как склад, бухгалтерия, финансовый отдел, прием и выдача заказов и т.д. Особенно актуальна пневмопочта для связи между удаленными друг от друга подразделениями.

Пневмопочта в банке используется для пересылки платежных документов и наличных денег между операционистами и кассирами в операционном зале.


Это позволяет обеспечить надежность и безопасность пересылки документов и денег, улучшить уровень обслуживания клиентов и условия работы персонала.

Некоторое время назад в одном из петербургских универсамов было совершено дерзкое ограбление. Когда сдавали деньги, преступник подошел к инкассатору и, угрожая оружием, потребовал передать ему всю выручку. В результате потери предприятия составили 2 млн рублей. Именно тогда в универсаме была установлена система пневмопочты. Это свело риск подобных потерь к нулю и обезопасило персонал в будущем.

Пневмопочта в административных зданиях обеспечивает быстроту и надежность пересылки оригиналов документов между управлениями и отделами организаций.(см. выше).

Пневмопочта в госпиталях и больницах используется для доставки:

больничных карт пациентов из регистратуры;анализов из отделений и операционных в лабораторию;результатов лабораторных анализов;рентгеновских снимков;пакетов с донорской кровью и трансплантантов;медикаментов в палату;внутренней почты.

Это позволяет освободить медицинский персонал от ненужного хождения по этажам и не отвлекать его от основных обязанностей.


Радио и телевидение


Изобретение телеграфа значительно ускорило по сравнению с почтой передачу сообщений - телеграмм, а телефон позволил передавать живую человеческую речь на большие расстояния. Однако телеграфная и телефонная связь требуют прокладки проводов - кабелей. Особые сложности вызвала прокладка подводных кабелей между континентами. Обойтись без проводов при передаче сообщений позволило изобретение радио, в котором есть только радиопередатчик и радиоприемники, связанные между собой радиоволнами. Передатчик их излучает, а приемники принимают. Слово "радио" в переводе с латинского radio означает "излучать".

Одно из величайших изобретений конца XIX века, беспроволочный телеграф, было сделано русским ученым Александром Степановичем Поповым (рис. 3.20) и почти одновременно с ним итальянцем Гульельмо Маркони в 1895 году. В его основе лежало открытие электромагнитного излучения. В 60-х годах XIX века Джеймс Максвелл теоретически предсказал существование электромагнитных волн, а в 1886 году Генрих Герц провел эксперимент, подтвердивший это предсказание. Для возбуждения электромагнитных волн он разработал вибратор, а для их приема - резонатор. Радиоволны представляют собой одну из разновидностей электромагнитных волн. Другие их разновидности - видимый свет и невидимые инфракрасные, ультрафиолетовые, рентгеновские и гамма-лучи. Различаются они между собой частотой, то есть числом колебаний в секунду.


Рис. 3.20.  А.С. Попов (1859 - 1905/06)


Рис. 3.21.  Первый радиоприемник А.С. Попова

Впервые мысль о применении электромагнитных волн для нужд связи высказал А.С. Попов. Он предложил придавать передаваемым сигналам определенную длительность (точки - тире) и с помощью азбуки Морзе передавать сообщения без проводов. Источником электромагнитных колебаний при этом служил вибратор Герца, а регистрировал их прохождение Попов с помощью разработанного в 1891 году Э. Бранли и усовершенствованного им чувствительного когерера - стеклянной трубки с платиновыми электродами, заполненной железными опилками.
Затем он присоединил к своей схеме телеграфный аппарат Морзе и ввел запись принимаемых сигналов на бумажную ленту. В результате получился первый в мире беспроволочный телеграф, состоящий из передатчика и приемника с записью сигналов с помощью азбуки Морзе.

7 мая 1895 года Попов впервые продемонстрировал работу созданного им радиоприемника. Первая радиограмма состояла всего из двух слов: "Генрих Герц". Сначала он принимал сигналы на расстоянии нескольких десятков метров. При этом Попов заметил, что дальность приема значительно возрастает, если к одному выводу когерера присоединить вертикальный провод, а к другому - заземленный провод. Так он изобрел приемную антенну.

В 1899 году Попов со своим помощником Рыбкиным построил новый радиоприемник, который принимал телеграфные сигналы на телефонные наушники на расстоянии 45 км. Зимой 1899/1900 годов приборы радиосвязи Попова были успешно применены при спасении броненосца "Генерал-адмирал Апраксин", который потерпел аварию у острова Готланд.

Почти одновременно с А.С. Поповым итальянец Г. Маркони создал свою радиотелеграфную установку и получил на нее английский патент. Он основал собственную компанию для реализации своего изобретения. Это дало ему возможность совершенствовать свой радиотелеграф, повысить его чувствительность, а также избирательность и дальность связи. Так, для осуществления избирательности радиосвязи Маркони использовал явление электрического резонанса и стал настраивать колебательные контуры передающей и приемной станций на одинаковую частоту. Проводя опыты по передаче радиосигналов на большие расстояния, Маркони сделал открытие. Он установил, что выпуклость земного шара не препятствует распространению электромагнитных волн. В 1901 году он со своим помощником Флемингом осуществил первую в историю передачу радиосигналов кодом Морзе через Атлантический океан на расстояние 1800 км. Вскоре были разработаны детекторы для приема радиосигналов.





12 декабря 1901 года в гостинице поселка Сент- Джонс канадской провинции Ньюфаундленд Г. Маркони принял с помощью простейшего приемника с когерером короткое радиопослание - две буквы S. Оно было послано искровым передатчиком с диполем Герца, расположенным на мысе Полду в юго-западной Англии в графстве Корнуэлл. В качестве антенны приемника Г. Маркони использовал провод длиной 150 метров, который он поднял над землей с помощью коробчатого змея собственной конструкции. С тех пор радисты всего мира отмечают дату начала эры дальней радиосвязи, начавшейся 100 лет тому назад.

С этого времени радиотехника начала бурно развиваться. В 1902 году Маркони осуществил прием радиосигналов на расстоянии 2000 км, а в декабре того же года была установлена регулярная двусторонняя радиотелеграфная связь между США и Англией. Президент Т. Рузвельт и король Эдуард VIII послали друг другу приветственные радиограммы.

Большой вклад в практическое освоение радиосвязи внесли военные моряки. Российский адмирал С.О. Макаров и английский адмирал Г. Джексон первыми в самом начале XX века установили системы радиовязи на кораблях.

12 июля 1902 года Г. Маркони на итальянском военном корабле посетил Кронштадт и показал свой приемник А.С. Попову, с которым был знаком по переписке. Два великих изобретателя хорошо понимали друг друга. Известно высказывание А.С. Попова: "Не подлежит, конечно, сомнению, что первые практические результаты по телеграфированию на значительные расстояния были достигнуты Маркони".

В октябре 1907 года фирма Г. Маркони открыла первую радиотелеграфную станцию для передачи сообщений из Европы в Америку. В первый же день частными лицами было передано 14 000 слов.

Наряду с А.С. Поповым и Г. Маркони большой вклад в развитие беспроволочного телеграфа внес немецкий физик и изобретатель Фердинанд Браун (1850-1918).


Рис. 3.22.  Карл Фердинанд Браун

В 1874 году он открыл свойство кристаллов сульфидов металлов проводить электрический ток только в одном направлении, а в 1897 году изобрел кристаллический детектор - основу простейшего детекторного приемника и предшественника современных транзисторов.


В том же 1897 году он разработал осциллоскоп (трубку Брауна), дающий зрительный образ меняющегося напряжения. На его основе позднее был создан кинескоп.

В конце XIX века Ф. Браун начал исследования в области беспроволочной телеграфии - вскоре после первых опытов Г. Маркони, использовавшего искровой электрический аппарат для генерации радиоволн. Ф. Браун разработал передатчик с безискровым антенным колебательным контуром. В состав этого контура входил переменный конденсатор. В силу резонанса колебания от радиопередатчика производили максимальный эффект в таком радиоприемнике, у которого частота колебаний совпадала с частотой колебаний передающей станции, т.е., когда они настроены на одну частоту. В результате стало возможным выбирать частоту, на которую откликается принимающая станция, так, чтобы сигналы другой частоты от других радиопередатчиков не мешали ее работе.

В 1899 году Браун взял патент на свое изобретение и основал "Телеграфную компанию профессора Брауна", через которую и внедрял свои изобретения. Среди них и был изобретенный Брауном кристаллический детектор (предшественник транзистора).

Ф. Браун и Г. Маркони получили в 1909 году Нобелевскую премию по физике "в знак признания их вклада в создание беспроволочной телеграфии". В своей нобелевской речи Ф. Браун подчеркнул преимущества безискровой радиотелеграфии по сравнению с искровой, позволившей значительно увеличить дальность передачи радиосигналов.

Но это был еще только радиотелеграф. Радиовещание речи и музыки началось позднее - в 1919 - начале 1920 года.

Решающую роль сыграло изобретение электронной лампы. В 1904 году английский ученый Флеминг, используя открытое Т.А. Эдисоном явление термоэлектронной эмиссии в вакууме, создал двухэлектродную лампу-диод и детектор электрических колебаний на ее основе. В 1907 году американский инженер Ли де Форест изобрел трехэлектродную лампу - аудион - с третьей дополнительной управляющей сеткой, впоследствии названную триодом. На ее основе в том же 1907 году он предложил одну из первых схем лампового радиоприемника, в которой триод использовался в качестве усилителя.



В 1913 году немецкий радиотехник Мейсснер использовал триод для генерирования незатухающих электрических колебаний. Он построил на его основе первый в мире радиотелефонный передатчик и осуществил радиотелефонную связь на расстоянии 36 км между Берлином и его пригородом. Ламповый генератор содержал ламповый триод и колебательный контур, состоящий из катушки индуктивности и конденсатора.


Рис. 3.23.  Ли де Форест

Изобретение лампового генератора дало возможность осуществить надежную и высококачественную радиотелефонную связь - передачу по радио речи и музыки.

Через антенну излучаются только мощные электрические колебания высокой частоты, а колебания звуковой частоты возбуждают такие слабые электромагнитные волны, что их нельзя принять на большом расстоянии. Поэтому для осуществления передачи звука мощные колебания высокой частоты лампового генератора изменяют (или модулируют) с помощью колебаний низкой (звуковой) частоты. При этом на высокочастотные колебания генератора накладываются низкочастотные колебания от микрофона и через антенну передаются в эфир. При этом получаются электрические колебания с переменной амплитудой - модулированные колебания высокой частоты. Это так называемая амплитудная модуляция.

С модулированным высокочастотным сигналом, принятым радиоприемником, происходит обратный процесс - детектирование, при котором из него снова выделяют сигнал звуковой частоты. Детектирование осуществлялось с помощью вакуумного диода. После усиления этот сигнал звуковой частоты вызывал колебания мембраны телефона или рупора громкоговорителя. Первые электронные лампы и схема радиоприемника "прямого усиления" были несовершенны.

В 1913 году американский радиотехник Э. Армстронг (1890-1954) разработал более совершенную схему регенеративного радиоприемника (с обратной связью), а в 1918 году - схему супергетеродинного радиоприемника, применяемую и по сей день. В супергетеродинном радиоприемнике принятые радиосигналы преобразуются (с помощью маломощного генератора колебаний радиочастоты - гетеродина) в колебания промежуточной частоты и после этого подаются в детектор.


Такие приемники обладают, по сравнению с приемником прямого усиления, значительно большей избирательностью и чувствительностью.


Рис. 3.24.  Армстронг

Схема супергетеродина применяется и сегодня во всех современных радиоприемниках (рис. 3.25).


Рис. 3.25.  Супергетеродинный радиоприемник СВД-9

Изобретения Э. Армстронга помог реализовать предприниматель Давид Сарнов (Sarnoff) (1891-1971) - американский пионер радио- и телевещания. Он эмигрировал с семьей в США из России в 1900 году и обосновался сначала в Олбани, а затем переехал в Нью-Йорк. Учась в школе, помогал семье: продавал газеты, работал посыльным, пел в синагоге. В 1906 году он оставил школу и устроился курьером в телеграфную компанию.


Рис. 3.26.  Д. Сарнов в юности

На первые заработанные деньги Д. Сарнов купил телеграфный аппарат, овладел азбукой Морзе и нашел работу в качестве радиотелеграфиста в компании беспроволочного телеграфа Маркони. Вскоре он стал опытным радиотелеграфистом. Через несколько лет Д. Сарнов стал оператором наиболее мощной в то время радиостанции, установленной на крыше манхэттенского универмага в Нью-Йорке. Там 15 апреля 1912 года он принял радиограмму с парохода "Олимпик", находившегося на расстоянии 2500 км от Нью-Йорка: "Пароход "Титаник" врезался в айсберг и быстро тонет". После этого он трое суток не снимал наушники, окруженный вниманием всего мира. По распоряжению президента У. Тафта все радиостанции на восточном побережье США замолкли на 72 часа, чтобы не мешать единственной радиостанции, поддерживавшей связь с тонущим "Титаником". Оператором этой радиостанции и был 20-летний Д. Сарнов. От него мир узнавал подробности случившейся трагедии, через него организовывались спасательные мероприятия и уточнялись списки спасенных. Разумеется, после этой 72-часовой вахты Д. Сарнов стал известнен всей стране. Вознагражденный компанией Маркони, он вскоре стал ее важным должностным лицом.

В 1919 году была образована Американская радиокорпорация (Radio Corporation of America - RCA) для создания системы национального радиовещания.


Ее учредителями стали крупнейшие компании "Дженерал Электрик", "Вестингауз", "Маркони-Америка" и АТТ, а ее коммерческим руководителем стал Д. Сарнов.

В 1921 году Д. Сарнов был назначен генеральным директором RCA.


Рис. 3.27.  Д. Сарнов - президент RCA 1930 г.

В 1926 году Д. Сарнов создал Национальную Радиовещательную Компанию (NBC) в качестве отделения RCA. К тому времени он почувствовал потенциал телевидения и в 1928 году запустил экспериментальную телевизионную станцию NBC. В 1939 году он осуществил телевизионную передачу с Всемирной выставки в Нью-Йорке.

Также Д. Сарнов содействовал развитию в СССР телевидения. В 1938 г. он продал Советскому Союзу комплект оборудования, положивший начало регулярному телевещанию в Москве. А в 1949 году, в разгар холодной войны, он активно содействовал поставкам аппаратуры для модернизации Московского телецентра. Кроме того, все лучшие отечественные радиозаводы были созданы на базе аппаратуры, закупленной у корпорации RCA.

Развитие телевизионного вещания было отсрочено Второй мировой войной, во время которой Д. Сарнов был консультантом по средствам связи при штабе генерала Д. Эйзенхауэра и получил звание бригадного генерала.

Д. Сарнов стал президентом RCA в 1930 году, председателем правления - в 1947 году и покинул ее в 1970 году, передав свой пост сыну Роберту. Умер Д. Сарнов в декабре 1971 года в возрасте 80 лет.

Д. Сарнов одним из первых в мире понял, что радиотелеграфной связи недостаточно, и пришел к идее организации радиовещания. Эта идея не возникла у таких корифеев радиотехники, как Г. Маркони, Т. Эдисон и Н. Тесла. Пионером радиовещания стал Д. Сарнов. Сначала он нашел ему применение в политике - во время выбора президента США в 1916 году. Сарнов предложил создать оперативную сеть из 20 мощных радиостанций для освещения хода и результатов выборов. Это были первые в мире политические радиопередачи. Но выборы президента происходят в США только раз в 4 года, и такие передачи снова потребовались только во время новых президентских выборов в 1920 году.


Радиостанции снова транслировали предвыборные митинги, съезды партий и речи кандидатов. Однако для привлечения массового потребителя радиовещания этого было мало.

В те же годы Д. Сарнов создал внутри RCA, образованного в 1919 году, мощную индустрию звукозаписи. Музыка тиражировалась на грампластинках фирмы "Виктор" и передавалась в эфир дочерней радиокомпанией NBC (National Broadcasting System). Симфонический оркестр NBC под управлением знаменитого дирижера Артуро Тосканини был признан лучшим в мире. На грампластинки записывались и предвыборные речи. Потом они воспроизводились через громкоговорители на митингах и партийных съездах.

Но Сарнов понимал, что для настоящего успеха радиовещания этого мало, и решил использовать интерес американцев к спортивным зрелищам. В 1921 году Д. Сарнов провел сенсационную радиопередачу матча бокса на первенство мира между тяжеловесами Д. Дэмпси (США) и Ж. Карпантье (Франция), которая показала возможности радиовещания и способствовала его быстрому распространению. Д. Сарнов сотрудничал с Э. Армстронгом и еще в 1916 году предложил для продажи первый промышленный радиоприемник, названный им "музыкальным ящиком". В течение трех лет после сенсационной радиопередачи 1921 года радиокорпорация RCA продала радиоприемников более чем на 80 млн долларов.

В Советской России в 1918 году была создана Нижегородская радиолаборатория (НРЛ), ставшая научно-исследовательским и производственным центром в области радиодела. Руководил ею один из пионеров радиотехники Михаил Александрович Бонч-Бруевич (1888-1940). В НРЛ были созданы мощные генераторные радиолампы, позволившие построить самые мощные в мире радиостанции. В 1922 году в Москве было закончено строительство первой в мире радиовещательной радиостанции имени Коминтерна (РВ-1). Вещание велось с радиобашни на Шаболовке, построенной выдающимся инженером В.Г. Шуховым (1853-1939).


Рис. 3.28.  М.А. Бонч-Бруевич




Рис. 3.29.  Радиобашня Шухова на Шаболовке в Москве

РВ- 1 стала самой мощной передающей станцией того времени. Она имела мощность 12 кВт. В 1922 году в Германии работала Кенигвустергаузенская станция мощностью 5 кВт, во Франции - Эйфелева башня мощностью 3 кВт, в Нью-Йорке - 1,5 кВт. Все они были радиотелеграфными.

В СССР строительством мощных радиостанций в течение многих лет руководил академик Александр Львович Минц (1874-1974).


Рис. 3.30.  Александр Львович Минц

Систематическое радиовещание началось в США и Англии в 1921 году, в Германии - в 1923 году, а в СССР - в 1924 году. Вскоре радиовещание превратилось в мощное средство массовой информации. Так, президент США Ф. Рузвельт регулярно выступал по радио с разъяснением своего "нового курса".

Радиовещание ведется на длинных волнах (ДВ - частота 30-300 кГц), средних волнах (СВ - частота 0,3-3 мГц), коротких волнах (КВ - частота 3-30 МГц) и ультракоротких волнах (УКВ - частота 30 МГц-1 ТГц).

Длинные волны распространяются в пространстве вдоль поверхности Земли днем и ночью, однако сильно ослабевают по мере удаления от передатчика. Поэтому на ДВ требуется большая мощность для него.

Средние волны днем сильно поглощаются верхним слоем атмосферы, ионосферой, и быстро ослабевают. Ночью ионосфера их отражает. Поэтому днем на средних волнах слышны только ближние радиостанции, а ночью - и более далекие.

Короткие волны приходят к антенне радиоприемника, отражаясь от ионосферы. На КВ работают судовые, самолетные и радиовещательные станции.

Ультракороткие волны не отражаются и не поглощаются ионосферой. Они проходят сквозь нее подобно лучам света и уходят в космос. Поэтому связь на УКВ возможна только при условии прямой видимости. УКВ используют для телевидения, радиорелейной связи, спутниковой связи и радиолокации, диспетчерской связи на железных дорогах.

В 1933 году Э. Армстронг получил патенты на новую систему радиосвязи - частотную модуляцию (FM) вместо применявшейся до этого амплитудной модуляции (АМ) при передаче речи и музыки. При этом получаются модулированные высокочастотные электрические колебания с переменной частотой (вместо переменной амплитуды).


Частотная модуляция позволила избавиться от помех, возникающих в эфире, и добиться гораздо более высокого качества радиопередачи. Однако это требовало коренных изменений в радиопередающей и радиоприемной аппаратуре. В 1939 году Э. Армстронг на свои средства построил первую радиостанцию с использованием частотной модуляции и доказал ее преимущества. Но все же частотная модуляция получила признание только после окончания Второй мировой войны и является теперь основной в радиовещании, телевидении и космической связи, обеспечивающей высокое качество передачи и защиту от помех.

Телевидение - это передача на расстояние с помощью радиоволн изображений подвижных объектов вместе со звуковым сопровождением.

Первой работающей телевизионной системой считается механическое телевидение - изобретение немецкого инженера Пауля Нипкова, которое он, будучи еще студентом, сделал в 1884 году.


Рис. 3.31.  Пауль Нипков

П. Нипков изобрел названный позднее его именем диск, с помощью которого изображение преобразовывалось в электрические импульсы. Это был диск с определенным числом отверстий, расположенных по спирали. Напротив него устанавливался фотоэлемент. Свет попадал на фотоэлемент через этот диск. Нипков вращал диск над картинкой или объектом. Световые импульсы проникали через отверстия диска и с помощью фотоэлемента превращались в электрические сигналы. Такой принцип последовательного просмотра изображения по точкам называют сканированием. Он используется и по сей день в современном телевидении. Тогда количество строк на экране было небольшим - около 300, то есть свет проникал на объект через триста отверстий. При этом телевизионная "картинка" была достаточно грубой.

На основе принципа сканирования с помощью диска Нипкова шотландский ученый Джон Бэрд в 1926 году впервые продемонстрировал публике передачу изображения и воспроизведения его на экране. Достоинство его телевизионной системы заключалось в том, что из-за очень малой разрешающей способности экрана можно было передавать телевизионное изображение, используя обычную средневолновую радиосистему.


Бэрд передавал изображение, используя радиосистему компании Би-Би-Си. Он первым в мире продемонстрировал телевизионное изображение, которое было размером всего с почтовую марку, слабым и мерцающим, с очень низкой разрешающей способностью, то есть способностью передавать в изображении мелкие детали объекта. Эту систему нельзя было усовершенствовать без изменения фундаментальных технологических принципов работы телевидения.

Электронное телевидение пришло на смену изобретению Нипкова много лет спустя.

В 1907 году русский ученый Б.Л. Розинг (1869-1933) (рис. 3.32) разработал и запатентовал способ передачи изображений с помощью электронно-лучевой трубки посредством внешнего фотоэффекта, открытого А. Г. Столетовым. Чтобы на экране было видно такое же изображение, он построил электромагнитное развертывающее устройство. Число строк развертки было тогда всего 12. В 1911 году Розинг осуществил первую в мире телепередачу по своей системе. Его патент был признан во многих странах, включая Германию, Великобританию и США.


Рис. 3.32.  Борис Львович Розинг

Решающую роль в создании электронного телевидения сыграли изобретения русского инженера Владимира Кузьмича Зворыкина (1889-1982). Он работал под руководством Б.Л. Розинга, позднее эмигрировал в США и работал в компании Westinghause, а затем в RCA. Президент RCA Давид Сарнов, пионер радио и телевидения, помогал осуществить его изобретения.

В 1923 году Зворыкин подал патентную заявку на иконоскоп - передающую телевизионную трубку, а в 1924 году на кинескоп - приемную телевизионную трубку. Вместе эти два изобретения составили первую полностью электронную телевизионную систему. В 1931 году В.К. Зворыкин (рис. 3.33) осуществил свой иконоскоп - передающую электронно-лучевую трубку. Он был позднее вытеснен более совершенными ортиконом и суперортиконом, но послужил основой для дальнейших важных разработок в области телевизионных камер. Современная приемная телевизионная трубка - это по существу кинескоп Зворыкина. Он разработал также цветную телевизионную систему, на которую получил патент в 1928 году.




Рис. 3.33.  Владимир Кузьмич Зворыкин

Практически одновременно с работами В.К. Зворыкина в США советский инженер С.И. Катаев (1904-1991) в том же 1931 году разработал свою передающую телевизионную трубку - иконоскоп. Передачу первого изображения при помощи своего иконоскопа с разверткой на несколько десятков строк он осуществил в том же 1931 году. Обе эти передающие трубки похожи друг на друга как близнецы. А в 1932 году Катаев создал вакуумную приемную телевизионную трубку.

Для того чтобы передать изображение на расстояние, его нужно сначала преобразовать в электрические сигналы, затем передать на расстояние с помощью радиоволн, а принятые сигналы расшифровывать и снова получить изображение.


Рис. 3.34.  Семен Исидорович Катаев

Преобразование изображения в электрические сигналы осуществляют с помощью передающей телевизионной трубки, а обратное преобразование электрического сигнала в изображение на экране телевизора - с помощью приемной телевизионной трубки - кинескопа.

В 1932 году Национальная Радиовещательная Корпорация (NBC), принадлежавшая RCA, начала экспериментальные телепередачи с самого высокого здания в Нью-Йорке - Эмпайр Стэйт Билдинг. Первое регулярное телевизионное вещание началось в Германии в 1935 году, а в Англии - в 1936 году. Тогда в Лондоне насчитывалось всего 400 телевизоров. К началу Второй мировой войны в Англии было уже около 2000 телевизоров, а в 1953 году их число увеличилось до 2 миллионов. Регулярное телевизионное вещание началось в США в 1939 года с показа церемонии открытия Нью-Йоркской Всемирной выставки. В этот день было показано выступление Д. Сарнова (см. выше) о перспективах телевидения, а Франклин Рузвельт стал первым президентом США, выступившим по телевидению.

Сначала телевидение не было коммерческим - вся реклама передавалась по радио, но с 1 июля 1941 года в США было официально разрешено коммерческое телевидение. Первой коммерческой телестанцией стала нью-йоркская WNBT, продававшая рекламодателям 15 часов в неделю.


Спонсоры, покупая эфирное время, должны были спонсировать и телепрограмму.

На время Второй мировой войны развитие коммерческого телевидения было остановлено, а в 1945 году возобновлено. В 1948 году в США уже было 36 действующих телевизионных станций и еще 70 строились. В домах у американцев к тому времени было около 1 миллиона телевизоров.

Массовое цветное телевидение впервые возникло в США. Уже в январе 1953 года федеральная комиссия утвердила для него единый технический стандарт - NTSC. Он был разработан компанией RCA, а принадлежащая ей телекомпания NBC уже в 1963 году транслировала цветные программы 40 часов в неделю.

В начале развития телевидения наибольшие трудности с его распространением испытывали США и Россия. Ведь обе эти страны имеют огромную площадь с различными временными зонами и невысокую плотность населения во многих районах.

В США было создано кабельное телевидение, соединившее различные города. Это позволяло транслировать одну и ту же программу в разных регионах страны.

В России была впервые использована спутниковая технология - еще до того, как технические возможности телевизионных приемников позволили принимать спутниковый сигнал.

В США начали "соединять" города телевизионными кабелями. Кабельное телевидение позволяло его абонентам принимать по желанию любое число каналов. Страны Европы по площади сравнительно невелики, а плотность населения значительно выше, чем в Америке и России. Поэтому в них экономически более выгодным было строительство сети наземных трансляционных станций, покрывающих всю площадь страны.

В последние годы технические возможности позволили начать массовое спутниковое телевизионное вещание, и началась острая борьба между компаниями кабельного и спутникового телевидения. Кабельное телевидение появилось и в Европе. Но его абоненты, которые хотят иметь дополнительные каналы, пользуются и спутниковым телевидением.

К началу XXI века телевидение наряду с телефоном и радио стало наиболее массовым средством информации, развлечения и даже средством политической пропаганды и агитации.В США уже давно исход президентских выборов решает телевидение. Телевизионные дебаты кандидатов в президенты смотрит вся страна. Да и исход президентских выборов в России в 1996, 2000 и 2004 годах в значительной мере определило телевидение.

В жизни современного человека телевидение является одним из основных видов получения информации о политических и спортивных новостях, любимых видах досуга и развлечений. Существуют десятки и сотни специальных телевизионных программ: это сказки, игровые кинофильмы и мультфильмы, викторины, рассказы о живой природе и путешествиях, спортивные - о футболе, хоккее, теннисе, автогонках "Формулы-1", фигурном катании, волейболе и других видах спорта. Существует множество полезных познавательных и обучающих программ по самым разным видам знаний - географии, истории, литературе, искусства, физики, химии, математике, информатике, биологии, которые помогают в учебе школьникам, абитуриентам и студентам.


Сигнализация и почта


В самом начале формирования человечества, еще до появления языка и речи самыми ранними средствами общения между людьми были мимика и жесты. При этом люди должны были находиться на расстоянии прямой видимости друг от друга. Один из них подавал сигналы с помощью мимики и жестов, а другой их принимал. Если принимающий сигналы человек отворачивался от жестикулирующего или закрывал глаза, то сигналы переставали до него доходить. С помощью мимики и жестов можно выразить очень многое. На этом построено искусство пантомимы, вида сценического искусства, в котором основные средства создания художественного образа - пластика, жест, мимика.

И в наше время применяется дактилология - азбука для глухонемых. Это своеобразная форма речи, воспроизводящая слова пальцами рук. Она используется как заменитель устной речи для общения слышащих с глухими, глухих между собой и как средство обучения глухих, а также для сурдоперевода в телепередачах (рис. 3.1).


Рис. 3.1.  Русская ручная азбука глухонемых

Можно было подавать сигналы и возгласами, но он слышны только на очень небольшом расстоянии. Когда возникли язык и речь, их тоже можно было услышать вблизи. Сложенные рупором ладони около рта немного увеличивали "зону приема". Но до изобретения микрофона и усилителя ораторы на больших собраниях и митингах могли полагаться только на силу своего голоса.

А как можно было передать сообщение людям, находящимся на большом расстоянии? Для этого были придуманы самые разные средства сигнализации - звуковые и световые, хорошо слышимые издали звуки и хорошо видимые издали знаки.

В африканских странах древнейшим видом звуковой сигнализации был бой барабанов - тамтамов. Отдельные удары и их сочетания обозначали буквы и целые слова. Первые путешественники из Европы очень удивлялись, как жители отдаленных африканских селений узнавали об их приближении. Это с помощью тамтамов вести передавались от селения к селению как по эстафете. Даже сейчас, в век телеграфа, телефона и радио, жители некоторых африканских селений пользуются древним "барабанным телеграфом".


В нашей стране использовался набатный колокольный звон, извещавший о пожаре, нападении врагов или другой опасности. Набат (от араб. наубат - барабанный бой) - это колокольный звон особого строя, означающий тревогу.

Позднее начали использовать сигнальные выстрелы из пушек. И сегодня в Санкт-Петербурге в Петропавловской крепости ежедневно производится сигнальный выстрел из пушки, оповещающий город о наступлении полудня - теперь это всего лишь традиция.

В православных храмах верующих зовут на молитвы с помощью колокольного звона. Для этого рядом с храмом располагается колокольня или звонница - башня с открытым ярусом для колоколов. В мусульманских странах рядом с мечетью располагается минарет - высокая башня с балконом. С него служащий мечети - муэдзин - громким голосом призывает мусульман к молитве.

В костеле Девы Марии в польском городе Кракове из слухового окна высокой башни ежедневно, в определенный час трубач подает звуковой сигнал - такова вековая традиция.

И сегодня используется звуковая сигнализация. Ее средства - это клаксоны автомобилей, свистки милиционеров, сирены поездов и кораблей.

Сигналы можно подавать с помощью музыкальных инструментов: рожка, горна, фанфар, барабана, целого духового оркестра. О прибытии почтовой кареты в XVIII веке в Европе оповещали с помощью почтового рожка.

В морском флоте для измерения времени с давних времен вахтенный матрос ударяет в сигнальный колокол каждые полчаса. Это как называемый бой склянок: например, шесть склянок означает три часа.

Древнейшим видом оптической сигнализации были сигнальные костры, предупреждавшие население о появлении врагов. Днем хорошо виден на большом расстоянии дым от костра, а ночью - пламя. По свидетельству римского писателя и ученого Плиния Старшего (24-79 гг. н. э.) подобный световой телеграф эффективно использовался еще во время Троянской войны, которая происходила, согласно "Илиаде" и "Одиссее", в XIII веке до н.э. В трагедии "Агамемнон" древнегреческого драматурга Эсхила (525-456 гг. до н.


э.) говорится о том, что весть о взятии Трои дошла до Греции в течение нескольких часов при помощи огневых сигналов, которые передавались с одного возвышенного места на другое.

Китайцы использовали с целью передачи срочной информации огни на башнях, которые расположены вдоль всей Великой китайской стены. Ее протяженность свыше 5 тыс. км при высоте 6,6 м, а на отдельных участках до 10 м. Построена она была в III веке до н. э.

Древнегреческий полководец и историк Полибий (около 200-120 гг. до н. э.) в своей книге "Всеобщая история" рассказал о водяном телеграфе: на двух высоких башнях, расположенных далеко друг от друга, стояли 2 совершенно одинаковых по размерам цилиндрических сосуда с водой - емкостью 15 ведер каждый. На поверхности воды плавали поплавки, а на поверхности сосудов были нанесены линейки с делениями. Против каждого деления были записаны условные сообщения. Дозорные на башнях должны были непрерывно следить друг за другом. Когда на передающей башне сигнальщик зажигал факел, нужно было одновременно открыть краны сосудов на обеих башнях. Вода вытекала из сосудов, и поплавки в них опускались. Дозорный на передающей башне ждал, пока поплавок не остановится против нужного деления, и после этого гасил свой факел. Дозорный на приемной башне замечал исчезновение огня и закрывал кран своего сосуда. Затем он смотрел на линейку с делениями и читал сообщение около деления, против которого установился поплавок.

Этот способ передачи сообщений был очень трудоемок, ненадежен, да и количество сообщений, которое можно было передать, не превышало одного-двух десятков, заранее нанесенных на линейки сосудов.

Полибий описал и более совершенный способ передачи информации на расстояния. Он заключался в том, что все буквы греческой азбуки (24 буквы) делились на пять частей (групп), из пяти букв в четырех и четырех в одной группе. Каждая группа букв наносилась на специальную доску.




Рис. 3.2.  Греческий алфавит из 24 букв, размещенный на 5 досках

Передающая информацию сторона поднимала факел и ждала ответа, тоже факелом: "Жду приема". Затем передающие сигнальщики с помощью факелов указывали, на какую доску необходимо смотреть. К примеру, один факел - смотри первую доску, два факела - смотри вторую и т.д. Далее процесс передачи информации состоял в следующем. С передающей стороны снова поднимали факелы, в зависимости от передаваемых букв, а точнее, их расположения: первая буква - один факел, вторая - два факела и т.д. При этом каждая сторона имела зрительные приборы для наблюдения. Этим способом могла быть передана любая информация, так как использовался весь греческий алфавит. Вместе с тем передача информации, таким образом, должна быть не только содержательна, но и предельно сжата. Такой способ передачи информации хотя и требовал большого количества факелов, а следовательно, и их носителей, зато передавал ее точно.

Говоря современным языком, буквы греческого алфавита были выписаны в виде прямоугольной матрицы, состоящей из столбцов и строк. Сообщив с помощью факелов номер столбца и строки, на пересечении которых в этой матрице находилась та или иная буква, можно было последовательно передавать целые слова и предложения, составлявшие любое сообщение. Можно считать, что в истории информатики это была первая попытка закодировать буквы алфавита с помощью чисел. Спустя много веков, в 1835 году С. Морзе изобрел свою телеграфную азбуку, закодировав буквы латинского алфавита с помощью комбинаций точек и тире. В XX веке при создании клавиатуры компьютера, как мы увидим позже, каждая буква на ней была закодирована числом в двоичном коде.

Заключенные в сталинских тюрьмах перестукивались с помощью метода этого древнего телеграфа, только с помощью звука. На стенах их камер писалась русская азбука (33 буквы), разбитая на шесть столбцов.

В соседнюю камеру сначала выстукивался номер столбца, а после ответа выстукивался номер буквы в столбце. И так буква за буквой передавалась определенная информация по эстафете из камеры в камеру по всей тюрьме.



Сигнализация широко применяется на железных дорогах. Каждый стрелочник и проводник поезда имеет набор сигнальных флажков, которыми он сообщает машинисту поезда о возможности движения или необходимости остановки. Широко применяются семафоры с механическим, а чаще с электрическим управлением.

В конце XVIII века в Европе заработал оптический, так называемый "семафорный телеграф", передававший информацию посредством специальных механизмов с подвижными элементами. Первый такой аппарат продемонстрировал английский ученый - физик Р. Гук (1635-1722) в 1684 году. Затем француз Амонтон устроил оптический телеграф, используя подвижные планки. Но только французам, братьям Клоду и Игнатию Шапп удалось добиться применения такого телеграфа в широких масштабах.

В 1792 году братья Шапп официально представили Национальному Конвенту Франции на утверждение такой прибор под названием семафор (носитель знаков). Он представлял собой систему семафоров - трех крыльев, могущих принимать различные положения и расположенных на вышках на расстоянии 15 миль друг от друга. На каждой вышке находился наблюдатель-телеграфист, с помощью подзорной трубы следивший за положением крыльев светофора на соседней вышке. При изменении положения этих крыльев он принимал сигнал с этой вышки, переводил ручку семафора, менял положение крыльев на своей вышке и тем самым передавал сообщение на следующую вышку. Из возможных 256 фигур (сочетаний положений крыльев) Шапп выбрал только 92, наиболее отличимые друг от друга. Выбрал он также 8400 наиболее употребительных французских слов и расположил их на 92 страницах - по 92 на каждой. Таким образом, с башни на башню передавался вначале номер страницы, а затем - номер слова на ней. Первая линия оптического телеграфа Париж-Лилль длиной 225 км была создана в 1794 году.

Главным недостатком такой телеграфии было то, что она зависела от погодных условий. Однако использовали ее до середины ХIХ века.

В 1794 году оптический телеграф получает широчайшее военное и гражданское применение. 225 километров линии Париж-Лилль сообщение пролетает за 10 минут, тогда как всаднику на это понадобилось бы часов двенадцать...


Строятся также линии Париж-Страсбург (450 км) и Париж-Тулон (1100 км). Вскоре протяженность линий оптического телеграфа составляет уже 50000 километров, а сообщения передаются в трех кодировках - военной, гражданской и служебной.

Независимо от французов известный русский механик-самоучка И.П. Кулибин (1735-1818) сконструировал аналогичный телеграфный аппарат. Но в царской России его, как и многие его другие замечательные изобретения, ждало неприятие и забвение.

Во Франции открытие семафорного телеграфа использовалось довольно эффективно, особенно в армии. Именно используя возможности быстрой передачи информации на большие расстояния для своих войск, Наполеон Бонапарт (1769-1812) добился ряда блестящих побед в Европе, поставив в зависимость от Франции большинство стран Западной и Центральной Европы.

В России первый семафорный телеграф протяженностью 60 км между Санкт-Петербургом и Шлиссельбургом был построен в 1824 году. Через десять лет телеграф связал столицу с Кронштадтом (базой Балтийского флота) - 30 км. В 1835 году такая связь была установлена между столицей и Царским Селом (25 км) и Гатчиной (52 км).

Выход России на европейскую арену осуществлялся в основном через Варшаву. В связи с этим в 1839 году был построен усовершенствованный вариант семафорного телеграфа между Санкт-Петербургом и Варшавой протяженностью в 1200 км. На то время это была самая длинная линия телеграфной связи такого рода, которая была сооружена из 149 станций-башен через каждые 8 км, высотой в 20 метров. 1200 километров сигнал из Санкт-Петербурга в Варшаву преодолевал за 15 минут. Такой метод передачи информации в России просуществовал до середины XIX века (1854 г.) и уступил свое место электрическому телеграфу.

В морском деле используется флажковая сигнализация, изобретенная еще в Средние века, а при плохой видимости (например, при тумане) - звуковые сирены-ревуны. Один сигнальный флажок на мачте корабля может обозначать целое слово или предложение, а в сочетании с другими - отдельную букву.


Для световой сигнализации используются сигнальные огни и специальные электрические светильники, излучающие направленные световые лучи. С помощью азбуки Морзе передают сигналы, прерывая пучок лучей и давая короткие и длинные по времени вспышки света (точки-тире). В ручном флажковом семафоре каждое положение рук матроса с флажками и его корпуса обозначает одну букву, цифру или знак препинания. Длинное и не очень срочное сообщение передается двумя флажками по буквам. С помощью сигнальных флагов, огней, световой сигнализации и ручного семафора корабли "общаются" между собой и с берегом.

А для связи внутри корабля существует машинный телеграф. У капитана корабля и у механика имеются одинаковые круги со стрелками и ручками. Капитан устанавливает ручку телеграфа, против какого либо деления стрелки, например с надписью "полный вперед" или "стоп машина". В момент поворота ручки раздается звонок. Механик смотрит, против какого деления установилась стрелка телеграфа, например "стоп машина", и выполняет команду капитана. Существует еще так называемый "звуковой телефон", придуманный французским монахом Домом Готом еще в 1782 году. Он представляет собой длинную тонкую трубу, к концам которой прикреплены два рупора. Они используются и для передачи сообщений, и для их приема, например, при переговорах между капитанским мостиком и машинным отделением корабля. Эти корабельные средства связи относятся к старинным и теперь заменены современными: телефоном и радиотелефоном.

Первую железную дорогу общественного значения открыл Джордж Стефенсон в 1825 году.

Движение на железных дорогах в начале их постройки происходило с низкой скоростью; точное соблюдение расписания обеспечивало безопасность движения. Однако уже на открытии линии Ливерпуль-Манчестер произошел несчастный случай, который заставил Джорджа Стефенсона придумать сигналы, обеспечивающие безопасность железнодорожного движения. По указанию Стефенсона были введены сигналы, которые подавали днем - флажками, а ночью - ручными фонарями.


Машинистам выдали рожки, которые в 1835 г. были заменены паровым свистком. С 1834 г. на линии Ливерпуль-Манчестер были введены неподвижные сигналы. Сначала это были деревянные столбы, поворачивающиеся на 90 градусов, с сигнальными дисками различной формы и цвета, которые при поворотах столбов обращались к движущемуся поезду узкой или широкой стороной. Широкая сторона требовала остановки поезда.

С изобретением в 1841 году англичанином Грегори семафора стал возможен переход от движения поездов с разграничением времени к разграничению их пространством.

Крупным шагом вперед в деле обеспечения безопасности движения поездов было введение блокировки, посредством которой путевые семафоры запирались на время, пока на соответствующем участке пути находился поезд.

К сигнализации относятся и светофоры для управления уличным движением. Первые светофоры были установлены на улицах Лондона в 1868 году, первый электрический трехцветный светофор появился в Нью-Йорке в 1918 году, а в Москве - в 1930 году.

До возникновения письменности важные сообщения доставляли гонцы - пешие и конные. Когда появилась письменность, они стали доставлять письма. Почта была хорошо налажена уже в древней Персии. Там была создана сеть почтовых станций, на которых находились верховые гонцы. Они с большой скоростью доставляли письма до следующей станции, а там передавали их следующему гонцу, который "по эстафете" доставлял их дальше. В древнем Риме также существовала подобная почта, которая занималась перевозкой только государственных писем и государственных чиновников. Она достигла расцвета при императоре Августе. Доставляли эту почту самые быстрые курьеры Рима - ведерарии. Почтовые письма и сообщения делались на покрытых воском дощечках. Каждую дощечку обертывали полотном и опечатывали восковой печатью. На полотняном "конверте" обозначали день, когда нужно было его вскрыть и прочитать. Такая почта выполняла обязанности рычага государственной власти. Наряду с государственной срочной почтой существовала и обычная "тяжелая" почта, которая доставляла письма средней срочности.




Рис. 3.3.  Повозка римской "тяжелой" почты

В средние века почта перестала быть государственной. Она принадлежала отдельным городам, монашеским орденам и купеческим гильдиям. В XVI веке в Германии возникла первая имперская почта, которой пользовалось уже все население. До 1867 года монополия на нее принадлежала династии Турн-и-Таксис, а в дальнейшем стала принадлежать государству.


Рис. 3.4.  Почтовая марка с портретом основателя почтовой династии Франциско де Таксиса

В России почта возникла в XIII веке при монгольском владычестве. Были созданы почтовые станции - ямы (откуда происходит слово ямщик) с гонцами, которые доставляли приказы ханов. Регулярная почта была налажена при царе Алексее Михайловиче: была установлена почтовая связь с Курляндией и Польшей. Основателем ее был боярин, политик и дипломат А.Л. Ордын-Нащокин. Эта почта перевозила и пассажиров.


Рис. 3.5.  А.Л. Ордын-Нащокин

При Петре I существовало уже 6 почтовых линий, а почта делилась на купеческую - для обслуживания частных лиц и ямскую - для обслуживания государственных учреждений. С появлением в 1782 году Почтового департамента ямские дворы начали называть почтовыми станциями.

В XVII-XVIII веках письма доставляли почтовые кареты. С 1830 года на железных дорогах для их доставки появились первые почтовые вагоны, а с 1840 года стали применять почтовые марки - единые знаки почтовой оплаты, изобретенные англичанами Хиллом и Чалмерсом.

В 1834 году издатель газеты "Данди Кроникл" Джеймс Чалмерс отпечатал в своей типографии на листе бумаги пробные марки, снабженные с оборотной стороны клеем, и представил эти образцы. При этом издатель объяснял преимущество изобретенной им наклеиваемой марки.

В 1837 году Роуленд Хилл опубликовал свой проект "Реформа почтового ведомства, ее значение и осуществимость". В своей работе он предлагал унифицировать почтовые сборы по всей стране, ввести предварительную оплату пересылки с помощью "маленьких кусочков бумаги, достаточных для того, чтобы на них поставить почтовый штемпель, и покрытых с одной стороны клеем, дающим возможность после увлажнения прилепить их к письму".


Р. Хиллу пришлось более трех лет вести упорную борьбу за свои реформы.

Парламент Великобритании законодательно закрепил новую концепцию в 1839 г. В 1840 г. правительство учредило почтовую "пенни-службу", в том же году были выпущены первые в истории марки - "Черный пенни", с изображением профиля королевы Виктории.

Джеймс Чалмерс, вынашивавший идею почтовой марки еще с 1834 года и в 1837 году подал через своего друга - депутата Палаты общин Роберта Уоллеса - предложение в комиссию, уже занимавшуюся рассмотрением проекта Хилла. Поэтому было признано, что приоритет в изобретении почтовой марки принадлежит Р. Хиллу.

Появление почтовой марки позволило резко увеличить объемы пересылаемой корреспонденции.


Рис. 3.6.  Почтовая марка (блок) с портретом Р. Хилла


Рис. 3.7.  Первая английская почтовая марка "Черный пенни"

В России почтовые марки были введены с 1 января 1858 года. Первый выпуск почтовых марок тиражом 3 миллиона экземпляров представлял собой одну беззубцовую марку номиналом 10 копеек.

В 1874 году по договоренности между 22 государствами, в число которых входила Россия, был образован Всемирный почтовый союз. Голубиная почта

"...Потом выпустил от себя голубя, чтобы видеть, сошла ли вода с лица земли. Но голубь не нашел места покоя для ног своих, и возвратился к нему в ковчег, ибо вода была еще на поверхности всей земли... И помедлил еще семь дней других; и опять выпустил голубя...

На этот раз голубь вернулся к Ною со свежим масличным листком в клюве, и Ной узнал, что вода сошла с земли."

Этот библейский эпизод повествует о первом в мире испытании навигационных способностей у птиц и использовании их для получения информации.

Уже в древности люди узнали, что ласточки и голуби умеют хорошо ориентироваться в пространстве, и решили воспользоваться талантами пернатых. Науке почтарей они обучали не только ласточек и голубей, но и морских птиц - фрегатов. Но все же лучшим почтальоном оказался домашний голубь.



Породы домашних голубей подразделяются на четыре большие группы - спортивно-гонные, отличающиеся своеобразием полета, декоративные, обладающие красивым и оригинальным опереньем, мясные, предназначенные для откорма на мясо, и почтовые, способные летать на длинные дистанции и переносить по воздуху почту.

Голубиная почта известна с древних времен.

В странах Междуречья голубей посылали с различными депешами. Позже голубиная почта возникла в Египте и в Греции. В Риме голуби конкурировали с ласточками.

Голуби-почтари способны летать без отдыха несколько часов подряд, преодолевая расстояния в среднем семьдесят километров в час.

Во времена континентальной блокады, устроенной англичанам Наполеоном, голубей использовали как контрабандистов. Под своими крыльями почтари переносили из Англии во Францию драгоценные камни.

В Англии почтовые голуби немало способствовали благосостоянию известного рода банкиров Ротшильдов. Один из них, Натан Ротшильд, живший в Лондоне, был страстным голубеводом. Во время наполеоновских войн он содержал частную голубиную почту. Агенты Ротшильда следовали по пятам за войсками Наполеона и немедленно передавали своему хозяину обо всех важных событиях с помощью почтовых голубей. Курс английских ценных бумаг до битвы при Ватерлоо был очень низким, а после поражения Наполеона он быстро поднялся, чем искусно воспользовался Ротшильд. С помощью голубей он узнал о поражении французского императора на три дня раньше английского правительства, и сыграл на повышение. Эта операция принесла ему миллионные доходы.

В России первую почтовую голубиную связь дальностью в 90 верст между Москвой и своим имением организовал в 1854 году князь Голицын. А в 1881 году военным ведомством был разработан проект голубиной связи Москва-Санкт-Петербург.

При осаде Парижа германскими войсками в 1871 году почтовые голуби доставляли огромное количество писем осажденных с призывами о помощи.

Основанная на природном свойстве голубей возвращаться к своему гнезду, голубиная почта использовалась в войсках в XIX и начале XX века - в первой мировой и гражданской войне.


Базами голубиной связи служили стационарные и полевые голубятни. Письма прикреплялись к лапке голубя, который мог доставлять их на расстояние до 300 км.

В Англии двести тысяч почтарей "были призваны" во время Второй мировой войны на военную службу. С ними было передано немало важнейших сообщений.

Шведский ученый Андре пропал во льдах, пытаясь достичь Северного полюса на воздушном шаре. Единственную весть, присланную им из Арктики, принес голубь, которого Андре взял с собою в путешествие...

И в наше время почтовый голубь используется для доставки сообщений и мелких посылок. В Голландии, например, голуби доставляют по назначению донорскую кровь в пробирках. Это выгоднее и быстрее, чем везти ее автомобилем по перегруженным магистралям. В Бельгии голуби служат для доставки почты (на небольшие расстояния), особенно секретной - переносят маленькие магнитные пластинки (5x5 мм), которые вмещают информацию, равную большой книге. В Великобритании голубей используют биржи. Японские и немецкие журналисты во время Олимпиады с помощью голубей моментально получали сведения о результатах соревнований.

В Прибалтике в начале 1980-х годов провели эксперимент: кто быстрее доставит письмо адресату - самолет, почта или голубь? Первым в этом соревновании оказался голубь. Ему одному удалось избежать бюрократии при оформлении и доставке письма и опередить современные средства связи.

В английском городе Плимуте голуби-почтари транспортируют из местной больницы в лабораторию, находящуюся в трех с лишним километрах от больницы, пробирки с кровью, взятой на анализ. Они делают эту работу в два раза быстрее, чем автомобили, перевозившие кровь прежде.

В больших городах, где на улицах часто случаются пробки, еще до изобретения мобильных телефонов, для передачи срочной информации использовали почтовых голубей. Агентство "Рейтер" с середины прошлого века успешно использовало голубиную почту - она была наиболее удобным способом передачи короткой информации через районы больших городов с их постоянными пробками.



Долгое время ученые не могли понять: каким образом птицам удается запоминать маршруты, по которым они летают? Почему они с такой невероятной легкостью находят свой дом? Иногда, например, обученные возвращаться по определенной трассе голуби сворачивали с нее и летели напрямик, по более короткой дороге.

Птиц отвозили в далекие, совершенно незнакомые им страны. Иногда всю дорогу их крутили, как на карусели, на патефонном диске или везли под наркозом, чтобы лишить птицу возможности чисто механически запомнить дорогу.

Но они и после наркоза с патефоном так же прекрасно ориентировались в поднебесных трассах.

Первым о том, что птицы, а вместе с ними и голуби-почтари, ориентируются по солнцу, догадался немецкий биолог Шнейдер. Они должны видеть либо само солнце, либо хотя бы ближайшую к нему часть небосвода в пределах дуги в 30-40 градусов.

Солнце в течение дня перемещается по небу, но пернатые это учитывают - у них сильно развито чувство времени.

Тем не менее почтовых голубей тренируют. Их принято обучать с того момента, как только они обретают способность летать.

Уже на второй год жизни почтовые голуби способны совершать перелеты на расстояние в тысячу километров.


Телеграф и телефон


До середины XIX века единственным средством связи между континентами, в частности между Европой и Америкой, была пароходная почта. Сообщения при этом доходили до адресатов за недели и месяцы. Да и в пределах каждого континента скорость доставки почты была достаточно медленной. Между тем развитие торговли требовало гораздо больших скоростей передачи информации.

В 1837 году американский художник и изобретатель Самюэль Морзе (1791-1872) создал электрический проводной (или проволочный, как его раньше называли) телеграф - первое средство дальней электросвязи. У С. Морзе было много предшественников, в частности русский барон Шиллинг, но лишь Морзе довел свое изобретение до практического использования. В 1838 году он придумал и телеграфный код (азбука Морзе) в виде точек и тире для кодирования сообщений.


Рис. 3.10.  Самуэль Морзе

Азбука Морзе существует уже более 160 лет и в наши дни используется в радиолюбительской связи, для передачи сигналов с полярных станций и сигналов бедствия. Сигнал SOS - "три точки - три тире - три точки" известен всем.

С 1 февраля 1999 года решением Международной морской организации сигнал SOS заменен автоматизированной системой оповещения о бедствии, замкнутой на глобальную сеть спутников "Инмарсат". Все страны перешли к новым, более современным и технологичным формам передачи сигналов бедствия. SOS заменен радиосигналом новой системы связи и оповещения при бедствии - GMDSS

При передаче сигналов по длинным электрическим линиям происходит их затухание. Для увеличения дальности передачи С. Морзе применил электрические реле, изобретенные Д. Генри. Вместе с промежуточными электрическими батареями они делили длинную электрическую цепь на ряд последовательных независимых цепей и позволили передавать сигналы на большие расстояния.

В 1844 году С. Морзе построил первую телеграфную линию Балтимор-Вашингтон и 24 мая передал первую телеграмму: "Чудны дела твои, Господи!" Телеграфные провода были подвешены на столбах, а в качестве изоляторов использовали горлышки бутылок.
Развитие телеграфной сети происходило вместе с постройкой сети железных дорог. В России первая телеграфная линия была построена между Москвой и Санкт-Петербургом в 1851 году. А в 1866 году после нескольких неудачных попыток был проложен телеграфный кабель по дну Атлантического океана и начала работать телеграфная линия между Европой и Америкой.

Позднее были изобретены буквопечатающие телеграфные аппараты - Юза, Бодо, Сименса, и скорость передачи возросла. Во время Великой Отечественной войны связь между Cтавкой и фронтами осуществлялась аппаратами Бодо. Современный телеграфный аппарат - телетайп ("печатающий на расстоянии") похож на пишущую машинку. Он имеет клавиатуру с буквами, цифрами и знаками препинания.

На основе телеграфа был создан телефон - один из самых распространенных в наше время видов электрической связи. Изобрел его американец Александр Белл в 1876 году. На изобретение телефона претендовали десятки и даже сотни изобретателей, но лишь А. Белл довел его до практического применения. Работая над созданием многоканального телеграфа, Белл, хорошо знакомый с акустикой, обратил внимание на возникновение звука в телеграфном аппарате при появлении электрического сигнала. Он решил установить на передающем пункте несколько камертонов, каждый из которых создавал бы в общей линии ток, пульсирующий со строго определенной частотой. На приемном пункте эти пульсации должны были восприниматься также камертонами, настроенными на соответствующую частоту. Так Белл собирался передавать одновременно семь телеграмм, по числу музыкальных нот. Работая над "музыкальным телеграфом", Белл одновременно начал строить аппарат, с помощью которого хотел сделать звуки речи видимыми для глухонемых сразу и непоср едственно, без всяких письменных обозначений. Для этого он почти год проработал в Массачусетском отоларингологическом госпитале, ставя различные эксперименты по изучению человеческого слуха. Главной частью аппарата должна была стать мембрана. На ней была укреплена игла, которая записывала на поверхность вращающегося барабана кривые, соответствующие различным звукам, слогам и словам.


Размышляя над действием мембраны, Белл пришел к идее другого устройства, при помощи которого, как он писал, "станет возможной передача различных звуков, если только удастся вызвать колебания интенсивности электрического тока, соответствующие тем колебаниям в плотности воздуха, которые производит данный звук". Это и натолкнуло его на мысль о создании дистанционного переговорного устройства, которое он назвал телефоном. Говоря современным языком, Белл сумел преобразовать звуковой сигнал - речь - в аналоговый электрический сигнал, передать его на расстояние и снова преобразовать в звуковой сигнал - речь.

Первые слова, сказанные по телефону 10 марта 1876 года, принадлежат самому шотландскому изобретателю Александру Беллу: Mr. Watson - Come here - I want to see you ("Мистер Уотсон, зайдите, я хочу вас видеть"). Звонил Белл своему помощнику Уотсону в соседнюю комнату.

В 1876 году Александр Белл демонстрировал свой аппарат на Филадельфийской всемирной выставке. Там впервые прозвучало слово "телефон" - так Александр Белл назвал свой "говорящий телеграф". К изумлению жюри, из рупора диковинного аппарата послышался монолог Принца Датского "Быть или не быть?", исполняемый в это же самое время, но в другом помещении, самим изобретателем. Изобретение Белла стало сенсацией Филадельфийской выставки. И это несмотря на то, что первый телефонный аппарат работал с чудовищными искажениями звука, и разговаривать с его помощью можно было на расстоянии не далее 250 метров. Ведь он действовал еще без батарей, силой одной лишь электромагнитной индукции, а его приемное и передающее устройства были примитивны.

Организовав "Общество телефона Белла", изобретатель начал усовершенствовать свой аппарат, и уже через год запатентовал новую мембрану и арматуру для телефона. Затем применил для увеличения расстояния передачи угольный микрофон Юза и питание от батарей.




Рис. 3.11.  Александр Белл


Рис. 3.12.  Телефон Белла

Телефон, изобретенный Беллом, был неудобен для пользователя: микрофон этого аппарата висел на неподвижном штативе. Поэтому вскоре его заменил телефон Л.М. Эрикссона: в нем микрофон и телефон объединены в единую конструкцию - микротелефонную трубку, которую абонент при разговоре держит в руке. Телефонный аппарат служит одновременно и передающим, и приемным аппаратом. Обычный аппарат соединен с микротелефонной трубкой телефонным шнуром.


Рис. 3.13.  Л.М. Эрикссон


Рис. 3.14.  Телефонные аппараты Эрикссона с микротелефонной трубкой - настенный и настольный

В первое время телефонные аппараты связывались между собой попарно. Звонков и коммутаторов они не имели. Для того, чтобы вызвать абонента к аппарату, стучали карандашом по мембране. Впоследствии Эдисон снабдил аппарат звонком. В 1878 году в Нью-Хейвене (США) была создана первая телефонная станция, а в России первые городские телефонные станции начали действовать в 1882 году в Санкт-Петербурге, Москве, Одессе и Риге. Они обслуживались телефонистками, осуществлявшими ручную коммутацию абонентов между собой. Абонент отыскивал в абонентской книжке нужный номер и звонил на станцию. Когда телефонистка отвечала, он сообщал голосом нужный ему номер. Если этот номер не был занят, телефонистка соединяла его с требуемым абонентом с помощью специальных штекеров. Для этого она вставляла штекер в соответствующее гнездо на коммутационной панели. После этого два абонента могли разговаривать между собой. По окончании разговора их разъединяли.


Рис. 3.15.  Телефонистка на коммутаторе

В 1881 году А.Б. Строуджер запатентовал декадно-шаговую систему автоматической телефонной станции (АТС), а в 1889 году создал электромеханический шаговый искатель - АТС. В 1896 году в г. Огаста (США) была построена первая действующая АТС.

В годы после изобретения телефона лишь немногие жители США могли позволить себе домашний телефон. Поэтому нужно было решать проблему оперативного доступа к телефонной связи. В ряде городов американского континента еще в конце 70-х годов XIX века открыли платные телефонные станции.


Применялся и другой способ расчета с абонентами: дежурный телефонной службы сопровождал клиента до телефонной кабинки, соединял с нужным номером и запирал до тех пор, пока не получит необходимую сумму в счет оплаты. Таким несовершенным сервис в области связи оставался до тех пор, пока американец Грей не создал телефон, который смог выполнять функции кассира, - таксофон. Это телефонный аппарат, в котором соединение с вызываемым абонентом устанавливается после опускания в таксофон одной или несколько монет или специального жетона. Первый таксофон был представлен в 1890 году на Всемирной выставке в Париже.

Неотъемлемая часть таксофона - кабина, или телефонная будка, которая появилась намного раньше телефона автомата. Создал ее ученый Т. Уотсон - помощник Г. Белла. В 1883 году Уотсон представил телефонную будку из натурального дерева. Кабина для разговора по телефону была оборудована вентилятором и подставкой, на которой размещалась чернильница с пером.

В начале XX века первые телефонные автоматы появились в Москве и Санкт-Петербурге. В 1909 году 17 таксофонов были установлены за пределами российской столицы. Таксофонный парк России быстро увеличивался. В 1938 году в Москве открылся первый таксофонный переговорный пункт общего пользования. К началу второй мировой войны в Москве было около 3 тыс. телефонов-автоматов, сегодня - свыше 20 тыс.

В 40-х годах XX века были созданы координатные АТС, в 70-х годах были построены электронные АТС, а за последние десятилетия они переведены на цифровую технику.

Значительные усовершенствования в конструкцию телефона внесли многие изобретатели и прежде всего Т.А. Эдисон, который сумел устранить постоянные шумы и обеспечил хорошую слышимость на большом расстоянии. Набор номера вызываемого абонента при автоматической телефонной связи осуществляется номеронабирателем: в старых аппаратах - дисковым с десятью отверстиями, а в новых - кнопочным с десятью кнопками. Сообщение о вызове осуществляется звонком. Первый дисковый номеронабиратель появился в 1896 году, а аппараты с кнопочным набором промышленность начала выпускать в 1963 году.



В первые годы советской власти телефоны с дисковым набором были редкостью и устанавливались только у важных лиц (200 номеров в Кремле и 20 номеров в научно-техническом отделе ВСНХ - Всероссийского Совета Народного Хозяйства). Такие аппараты называли "вертушкой". Сегодня это слово осталось в языке как обозначение прямого правительственного телефона в кабинете у большого начальника, хотя сами "вертушки" с гербом на диске вымирают, уступая место кнопочным телефонам.


Рис. 3.16.  Телефонный аппарат с дисковым номеронабирателем

Современные телефонные аппараты имеют целый ряд дополнительных возможностей. Так, широко используются радиотелефоны, в которых трубка соединена с базовым телефонным аппаратом с помощью радиоканала. При этом и аппарат, и трубка снабжены радиоантеннами. Зачастую такая трубка имеет кнопочный номеронабиратель, позволяющий абоненту набирать номер, не подходя к базовому телефонному аппарату.


Рис. 3.17.  Телефонный аппарат с кнопочным номеронабирателем

В телефонную трубку такого "бесшнурового" телефона встроен миниатюрный батарейный приемопередатчик, работающий на той же волне, что и другой приемопередатчик, который находится в корпусе телефонного аппарата, подключенного к сети электропитания и к телефонной сети. В корпусе телефонного аппарата имеются звонок вызова и зарядное устройство для аккумулятора питания приемопередатчика.

Приемопередатчик телефонной трубки может работать на расстояниях, немногим меньших 1 км, а в некоторых моделях - до 3,5 км. Емкость питающего его аккумулятора достаточна для разговора в течение 45 мин и в течение 6 ч обеспечивает готовность телефона со снятой трубкой. Когда трубка положена, ее аккумулятор автоматически подзаряжается.

Основное преимущество домашнего радиотелефона - возможность свободного перемещения абонента в радиусе действия приемопередатчика. Главный недостаток - незащищенность большинства моделей от несанкционированного подключения к телефону посторонних лиц.




Рис. 3.18.  Радиотелефонный аппарат

Некоторые аппараты снабжают динамиком для осуществления "громкой" связи, при которой телефонный разговор слышен в комнате, где установлен аппарат. Существует еще целый ряд полезных функций: память последнего набранного номера, автоматический "дозвон" с помощью нажатия только одной кнопки после однократного набора номера; функция "записная книжка", в которой по желанию абонента кодируются наиболее часто используемые номера телефонов (после этого их можно набрать нажатием только одной кнопки) и т.д. Все эти функции обеспечивает встроенный в аппарат микропроцессор.

Большой популярностью пользуются телефонные аппараты с автоответчиком - встроенным в них миниатюрным магнитофоном, автоматически включающимся на запись при каждом звонке. Такой аппарат позволяет узнать содержание сообщений, сделанных звонившими абонентами в отсутствие хозяина аппарата с автоответчиком - запись можно прослушать после возвращения.

Появился уже и видеотелефон, в котором передача речи дополняется передачей изображения. Телевизионная камера одного видеотелефона формирует сигнал изображения абонента, участвующего в сеансе связи, и его изображение высвечивается на небольшом телевизионном экране (75-100 мм по диагонали, на жидких кристаллах) другого видеотелефона.


Рис. 3.19.  Видеотелефонный аппарат

Но самым выдающимся изобретением последних десятилетий стал мобильный (сотовый) телефон - гибрид радио и компьютера. Но о нем - позднее.


Традиционные средства связи


Важно не только добыть необходимую информацию, зафиксировать ее в памяти, но и своевременно передать получателю, если он находится в другом месте. Эту задачу выполняют средства связи. К ним относятся сигнализация, почта, телеграф, телефон, радио, телевидение, пейджинговая связь, космическая связь. Древнейшие из них - это сигнализация и почта.



Век полупроводников, микроэлектроники


В 1883 году Т.А. Эдисон пытался увеличить срок службы осветительной лампы с угольной нитью накаливания. Он ввел в баллон лампы, из которой откачан воздух, металлический электрод. К выводу впаянного электрода и одному из выводов раскаленной электрическим током нити он подсоединил батарею и гальванометр. Стрелка гальванометра отклонялась, когда к электроду подсоединялся плюс батареи, а к нити - минус. При смене же полярности ток в цепи прекращался.

Этот эксперимент привел Эдисона к фундаментальному научному открытию, которое стало основой работы всех электронных ламп и всей электроники дополупроводникового периода.

Открытое им явление впоследствии получило название - термоэлектронная эмиссия.

В 1905 году этот "эффект Эдисона" стал основой британского патента Джона Флеминга на "прибор для преобразования переменного тока в постоянный" - первую электронную лампу-диод, открывшую век электроники.

В 1907 году американский инженер Ли де Форест ввел в лампу третий электрод - управляющую сетку. Эта лампа получила название "аудион", а впоследствии - "триод". Такая лампа могла уже работать в качестве усилителя колебаний, а с 1913 года на ее основе был создан генератор незатухающих колебаний.

Создание электронных ламп дало толчок бурному развитию в 1910-1920-х гг. радиосвязи и радиовещания, а появление в 1930-х гг. передающих (иконоскопов) и приемных (кинескопов) электронно-лучевых приборов обусловило возникновение электронного телевидения.

В результате сформировалась технология приборов вакуумной электроники, появились заводы по производству таких приборов, положившие начало развитию электронной промышленности. До 1960-х гг. вакуумная электроника представляла практически всю электронику.

А.Ф. Иоффе сделал ряд классических работ в области физики твердого тела, особенно в области полупроводников, исследовать которые он начал первым в мире. А ведь в начале 1930-х годов они считались бесперспективными. Он организовал лабораторию полупроводников, которая затем превратилась в научно-исследовательский институт и целое направление в науке (рис. 3.35).


Рис. 3.35.  А.Ф. Иоффе

Первым полупроводниковым материалом в электронике стал селен. В 1873 году американский физик У. Смит открыл эффект изменения сопротивления селенового столбика под действием света. На этой основе был создан первый полупроводниковый прибор - фоторезистор. В 1874 году немецкий физик К.Ф. Браун открыл одностороннюю проводимость контакта металла - полупроводника. Это привело в 1900-1905 гг. к использованию полупроводников в кристаллических детекторах для демодуляции радиотелефонных сигналов.

Одним из первых начал экспериментировать с кристаллическими детекторами-генераторами О.В. Лосев (1903-1942). Олег Владимирович Лосев обессмертил свое имя двумя открытиями: он первым в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока. В 1923 году он получил патент на детекторный приемник - гетеродин (кристадин). Еще при ранних исследованиях детекторов в 1923 году он заметил, что при пропускании тока некоторые из них испускают свет. Особенно ярко светились карборундовые детекторы. В Ленинграде Лосев (рис. 3.36) и занялся изучением и объяснением этой электролюминесценции, в значительной степени в содружестве и при поддержке Физико-технического института, возглавляемого академиком А.Ф. Иоффе.


Рис. 3.36.  О.В. Лосев

Наследник А.Ф. Иоффе по Физико-техническому институту (Физтеху) и его сегодняшний директор Ж.И. Алферов (рис. 3.37) в 2000 году получил Нобелевскую премию за работы в области полупроводниковых гетероструктур и созданию современной полупроводниковой оптоэлектроники и полупроводниковой лазерной техники. На их основе работают лазерные проигрыватели и многие другие современные электронные приборы.


Рис. 3.37.  Ж.И. Алферов

Толчком к развитию полупроводниковой электроники явилось изобретение в 1948 году американцами У. Шокли, У. Браттейном и Дж. Бардиным транзистора - полупроводникового прибора для усиления, генерирования и преобразования электрических колебаний, выполненного на основе монокристаллического полупроводника. Транзистор (от англ. transfer - переносить и resistor - сопротивление) - трехполюсный полупроводниковый электронный прибор, изменяющий свое сопротивление при приложении напряжения на управляющий электрод, что позволяет управлять мощной цепью при помощи слабого сигнала. Благодаря этому свойству транзистор применяется для усиления, коммутации и преобразования электрических сигналов. Позднее транзисторы заменили вакуумные лампы в большинстве электронных устройств, свершив революцию в создании интегральных схем и компьютеров.

В 1951 году в Силиконовой долине, к югу от Сан-Франциско (Silicon Valley, от silicon - английского названия кремния, основного элемента, применяющегося при производстве полупроводников) был создан крупный научно-промышленный центр. Занимает полосу в 56 км в длину и 16 км в ширину, протянувшуюся с северо-запада на юго-восток, и включает города Сан-Хосе, Пало-Альто, Санта-Клара, Лос-Альтос, Санни-Уэлли. В Силиконовой долине самая высокая в мире концентрация предприятий электронной промышленности.

В Силиконовой долине действуют свыше 3 тысяч фирм. Сотни из них выпускают компьютеры, около тысячи специализируются на программном обеспечении. Здесь работают около 40% американских инженеров, занятых в сфере информационных технологий. Здесь же расположен Стэнфордский университет. Технологии и продукция Силиконовой долины в необычайно короткий срок изменили мир, насытив его современными микропроцессорами, компьютерами, цифровыми фото- и видеокамерами, сотовыми телефонами и др.

Подробный рассказ об элементах и устройствах полупроводниковой техники - в главе "История компьютера".

Почти весь XX век прошел с электронно-лучевыми передающими (иконоскопами) и приемными (кинескопами) приборами. Кинескопы нашли массовое применение в телевизорах и мониторах персональных компьютеров. Но представить себе портативную видеокамеру с иконоскопом невозможно, так же как кинескоп - в качестве индикатора в портативных часах или сотовом телефоне. Электронно-лучевые приборы непригодны для этих целей ни по габаритам, ни по физическим характеристикам. Все-таки это высоковольтные приборы.

В 1969 году исследователи из Bell Laboratories - Уиллард Бойл (Willard Boyle) и Джордж Смит (George Smith) сформулировали идею прибора с зарядовой связью (ПЗС) для регистрации изображений. В 1973 году компания Fairchild начала промышленный выпуск ПЗС-матриц. Они были черно-белыми и имели разрешение всего 100х100 пикселей.

Прибор с зарядовой связью (ПЗС), или Charge Coupled Device (CCD), представляет собой микросхему, состоящую из соединенных между собой полупроводниковых конденсаторов. Каждый из конденсаторов держит определенный заряд. С помощью управляющей электрической схемы эти заряды определенным, синхронизированным во времени образом последовательно, по цепочке сдвигаются с одного конденсатора на другой, соседний. ПЗС-матрица является миниатюрным полупроводниковым прибором, служащим для преобразования оптического изображения в аналоговый электрический сигнал. В результате получается аналоговый электрический сигнал, соответствующий отснятому изображению. Пройдя через аналогово-цифровой конвертор (Analogue-Digital Converter, ADC) информация преобразуется в цифровую форму, после чего ее можно сжимать, сохранять и обрабатывать разными способами.

Чтобы получить полноцветное изображение, возможны два пути. Один из них - при помощи призм и фильтров разбить поступающий через объектив свет на цветовые составляющие, а затем отправить красную, зеленую и синюю составляющие на отдельные матрицы CCD.

Второй путь - использовать один CCD, но поместить перед ним мельчайший фильтр с отдельной цветовой ячейкой для каждого пикселя. В результате получается CCD с набором вертикальных красных, зеленых и синих полос. Пиксели группируются в тройки: каждый из них передает свое собственное значение яркости, а цветовая составляющая вычисляется как среднее из трех значений.

Приборы с зарядовой связью стали основой для современной любительской видеосъемки и цифровой фотографии.

Жидкие кристаллы - вещества, способные изменять ориентацию молекул под воздействием электрических полей, - открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Вместе с немецким кристаллографом Ф. Леманом они описали необычные свойства жидких кристаллов. Это произошло задолго до изобретения кинескопа. Однако, как иногда случается, ученые не обратили особого внимания на необычные свойства этих жидкостей. Впервые советские ученые В.К. Федерикс и В.Н. Цветков в 1930-х годах исследовали их необычные электрические и оптические характеристики.

В 1930-м году исследователи из британской корпорации Marconi получили патент на их промышленное применение. Первый настоящий прорыв совершили ученые Фергесон и Вильямс из корпорации RCA (Radio Corporation of America). Первый из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, а второй изучал воздействие электрического поля на жидкие кристаллы. В 1966 году корпорация RCA продемонстрировала прототип LCD (Liquid Crystal Display) - цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор был произведен в 1964 г. именно этой корпорацией. В октябре 1975 года уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 1970-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с экраном диагонал ью 5,5 дюйма, выполненным на базе LCD-матрицы, с разрешением 160х120 пикселей.

Работа ЖКД (LCD) основана на явлении поляризации светового потока. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полям и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами. Действие жидкокристаллического LCD-монитора (или любого индикатора, например часов или калькуляторов) основано на использовании вещества, находящегося в жидком состоянии, но при этом обладающего некоторыми свойствами кристаллических тел. Молекулы таких жидких кристаллов под действием электрического поля способны изменять свою ориентацию и свойства проходящего сквозь них светового луча. Пользуясь этим свойством, в жидкокристаллических индикаторах, изменяя электрическое напряжение и ориентацию молекул, создают изображение.

LCD-монитор имеет несколько слоев, содержащих между собой тонкие слои жидких кристаллов. Панель монитора подсвечивается источником света. В зависимости от его расположения панели работают или на отражение, или на прохождение света. В цветных мониторах цвет получается с помощью трех фильтров.

В компьютерных LCD-мониторах используются так называемые нематические или супернематические жидкие кристаллы. Нематические элементы способны поворачивать плоскость поляризации на угол до 90 градусов, а супернематические - до 270 градусов. Супернематические кристаллы обладают высоким быстродействием и контрастностью. Они применяются для пассивных индикаторов. Нематические кристаллы используются в высококачественных цветных мониторах.

В пассивных индикаторах элементы располагаются на пересечениях сетки проводников, к которым подводится электрическое поле путем переключения транзисторов, подключенных к этим проводникам. Такие элементы имеют эффект последействия, поэтому движущиеся предметы на них расплываются.

В активных жидкокристаллических TFT-экранах (Thin Film Transistor - тонкопленочный транзистор) каждый элемент снабжается транзистором. Эти транзисторы управляют приложенным напряжением и быстрее переключаются.

В цветных жидкокристаллических экранах элементы группируют по три (в вертикальный ряд). Каждые такие три элемента образуют пиксель. Каждый элемент имеет светофильтр. Транзисторы управляют количеством проходящего света, образуя нужную смесь цветов.

Недостатком пассивных мониторов является возможность смотреть на них только во фронтальной позиции, а экран с активной матрицей имеет угол обзора 120-160 градусов и обладает хорошей яркостью и контрастностью изображения. Первые LCD-мониторы выпускались только для портативных ПК с диагональю экрана 8 дюймов. Сегодня LCD-мониторы для портативных ПК имеют по диагонали 15 дюймов, а для настольных - 19 и более дюймов (рис. 3.38).


Рис. 3.38.  LCD-монитор

Экран такого LCD-монитора (или телевизора) представляет собой матрицу ЖК-элементов. В пассивной матрице ЖК-элементов выбранная точка изображения активируется подачей напряжения на соответствующие прозрачные адресные проводники-электроды строки и столбца.

В этом случае невозможно достичь высокого контраста изображения, так как электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема вполне разрешима при использовании так называемой активной матрицы ЖК-элементов, когда каждой точкой изображения управляет свой электронный переключатель. LCD-мониторы, в отличие от СRT-мониторов, являются полностью цифровыми приборами. Однако приходится обеспечивать их совместимость с аналоговыми СRT-мониторами. Для этого цифровой сигнал от системного блока компьютера сначала преобразуется в видеокарте в аналоговый сигнал, а затем снова в цифровой - уже в самом LCD-мониторе. Для преодоления этого неестественного положения уже созданы первые цифровые видеокарты.

Несомненным преимуществом LCD-мониторов по сравнению с CRT-мониторами является почти полное отсутствие вредного излучения, которому подвергается человек, работающий перед экраном электронно-лучевой трубки, а недостатком - пока еще весьма высокая цена, которая, однако, довольно быстро снижается по мере увеличения выпуска LCD-мониторов.

Стандарты безопасности, которым эти мониторы должны отвечать, - TCO или MPRII, разработанные в Швеции.

К преимуществам экранов TFT относятся отличная фокусировка, отсутствие геометрических искажений и ошибок совмещения цветов. Кроме того, у них никогда не мерцает экран. В этих дисплеях не используется электронный луч, рисующий слева направо каждую строку на экране. Когда в ЭЛТ этот луч переводится из правого нижнего в левый верхний угол, изображение на мгновение гаснет (обратный ход луча). Напротив, пиксели дисплея TFT никогда не гаснут, они просто непрерывно меняют интенсивность своего свечения.

Экран, который не мерцает, гораздо меньше утомляет глаза.

Несомненным преимуществом жидкокристаллического экрана является маленькая толщина экрана, составляющая всего около 20 мм, по сравнению с толщиной ЭЛТ-экрана монитора персонального компьютера или телевизора, составляющей 200 и более мм. Особенно важна малая толщина жидкокристаллического экрана в миниатюрных электронных приборах, таких как сотовый телефон, карманный компьютер и др.

Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Прежде всего они были задействованы в ноутбуках, а затем и в настольных персональных компьютерах. А сегодня они нашли массовое применение в дисплеях карманных компьютеров, сотовых телефонов, электронных записных книжек, коммуникаторов, цифровых фото- и видеокамер, дисплеях всей бытовой электроники.

Плазменные панели появились в 1999 году. Они используются только в качестве мониторов телевизоров.

Работа плазменного (PDP - Plasma Display Panels) монитора похожа на работу неоновой лампы. Он выполнен в виде плоской стеклянной трубки, заполненной инертным газом под низким давлением. Внутри трубки помещены два электрода. При подаче напряжения между ними зажигается электрический (так называемый тлеющий) разряд и возникает свечение. В плазменных экранах пространство между двумя стеклянными поверхностями заполняется, как и в неоновой лампе, инертным газом - аргоном или неоном. На стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение: образуется целое поле миниатюрных точечных неоновых лампочек. Под действием напряжения в газовой области, прилегающей к электроду, возникает электрический разряд. Плазма этого разряда излучает свет в ультрафиолетовом диапазоне спектра, а он, в свою очередь, вызывает свечение частиц люминофора в видимой человеком части спектра. То есть каждый пиксель на экране работает подобно лампе дневного света.


Рис. 3.39.  Плазменный экран

Преимуществами плазменных экранов являются высокая яркость, контрастность и очень большой угол обзора - до 180 градусов. У них отсутствует дрожание картинки, так как она выводится не по строчкам, а прямо в цифровом виде. Размер плазменных экранов достигает 100 см при толщине всего 8,5-9 см, то есть его, как картину, можно поставить на стол или повесить на стену. Плазменные экраны (телевизоры), так же как и жидкокристаллические, являются полностью цифровыми приборами.

<

Беспроводные системы связи


Беспроводные системы связи осуществляются по радиоканалам. Первую такую беспроводную связь - радиотелеграф (тогда его называли "беспроволочный телеграф") изобрел А.С. Попов и развил Г. Маркони. Главную роль в создании радиовещания (или звукового вещания) сыграли изобретения Ф. Брауна, Ли де Фореста, А. Мейсснера, Э.Г. Армстронга. В 1913 году Э. Армстронг изобрел регенеративный радиоприемник (с обратной связью), а в 1918 году - супергетеродинный радиоприемник, схема которого используется и сегодня. Однако в них тогда применялась амплитудная модуляция, не позволявшая получить высокое качество звука радиоприемника из-за невозможности подавления помех в радиоэфире. Она обеспечивала верхнюю границу частотного диапазона не более 5000 Гц.

1934 году Э. Армстронг изобрел частотную модуляцию (ЧМ), позволившую избавиться от помех и обеспечивавшую высококачественное воспроизведение звука радиоприемника и передачу полного диапазона слышимости человеческого уха - звуков от барабана до флейты, в диапазоне от 50 Гц до 15 000 Гц.

В 1939 году Э. Армстронг построил первую радиостанцию, работающую в ЧМ диапазоне радиоволн. Сегодня в мире работают многие тысячи ЧМ-радиостанций, обеспечивающих высококачественное звучание. Применяется частотная модуляция и для передачи звука в телевидении.

С 1915 до 1950-х гг. аппаратура для радиосвязи развивалась на основе электронных ламп; затем были внедрены транзисторы и другие полупроводниковые приборы.

До 1920 года в радиосвязи применялись преимущественно волны длиной от сотен метров до десятков километров. В 1922 году радиолюбителями было открыто свойство коротких волн распространяться на любые расстояния благодаря преломлению в верхних слоях атмосферы и отражению от них. Вскоре короткие волны стали основным средством осуществления дальней радиосвязи.

В 1930-е гг. были освоены метровые, а в 40-е - дециметровые и сантиметровые волны, распространяющиеся прямолинейно, не огибая земной поверхности (т. е. в пределах прямой видимости), что ограничивает прямую связь на этих волнах расстоянием в 40-50 км в равнинной местности, а в горных районах - в несколько сотен километров.
Поскольку ширина диапазонов частот, соответствующих этим длинам волн, - от 30 Мгц до 30 Ггц - в 1000 раз превышает ширину всех диапазонов частот ниже 30 Мгц (волны длиннее 10 м), они могут передавать огромные потоки информации и осуществлять многоканальную связь. В то же время ограниченная дальность распространения и возможность получения острой направленности с антенной несложной конструкции позволяют использовать одни и те же длины волн во множестве пунктов без взаимных помех. Передача на значительные расстояния достигается применением многократной ретрансляции в линиях радиорелейной связи или с помощью спутников связи, находящихся на большой высоте (около 40 тыс. км) над Землей (см. "Космическая связь"). Позволяя вести на больших расстояниях одновременно десятки тысяч телефонных разговоров и передавать десятки телевизионных программ, радиорелейная и спутниковая связь по своим возможностям являются значительно более эффективными, чем обычная дальняя радиосвязь на метровых волнах.


Факсимильная связь


Факсимильная (или фототелеграфная) связь - это электрический способ передачи графической информации - неподвижного изображения текста или таблиц, чертежей, схем, графиков, фотографий и т.п. Осуществляется при помощи факсимильных аппаратов: телефаксов и каналов электросвязи (главным образом телефонных).

Первый телефакс был запатентован в 1843 году шотландским изобретателем Александром Бэйном. Его "записывающий телеграф" работал на телеграфных линиях и был способен передавать только черно-белые изображения, без полутонов.

Джованни Касселли в 1855 году изобрел аппарат пантелеграф (Pantelegraph), который обеспечивал передачу документов по линии, соединяющей Париж с Лионом. Позднее к ним присоединились и многие другие города. К 30-м гг. XX века системы на основных принципах Александра Бэйна и Джованни Касселли уже широко использовались в офисах издательств (для передачи свежих выпусков газет), государственных служб (для передачи срочных документов), служб защиты правопорядка (для передачи фотографий и других графических материалов). Для передачи документов применялись аналоговые технологии, которые не могли обеспечить высокого качества графических изображений. И только внедрение цифровых технологий в начале 80-х годов XX века позволило обеспечить высокое качество не только текстовых материалов, но и графических изображений при передаче по телефонным каналам связи.



Интернет-телефония


Одним из самых современных и экономичных видов связи стала Интернет-телефония. Днем ее рождения можно считать 15 февраля 1995 года, когда фирма VocalTec выпустила свой первый soft-phone - программу, служащую для обмена голосом по сети IP. Затем Microsoft выпустил в октябре 1996 года первую версию NetMeeting. А уже в 1997 году стали вполне обычными соединения через Интернет двух обычных телефонных абонентов, находящихся в совершенно разных местах планеты.

Почему обычная междугородная и международная телефонная связь так дорога? Объясняется это тем, что во время разговора вы занимаете целый канал связи, причем не только когда вы говорите или слушаете собеседника, но и когда вы молчите или отвлекаетесь от разговора. Так происходит при передаче голоса по телефону обычным аналоговым способом.

При цифровом же способе информацию можно передавать не непрерывно, а отдельными "пакетами". Тогда по одному каналу связи можно посылать информацию одновременно от многих абонентов. Этот принцип пакетной передачи информации подобен перевозке множества писем с разными адресами в одном почтовом вагоне. Ведь не "гоняют" же один почтовый вагон для перевозки каждого письма в отдельности! Такое временное "пакетное уплотнение" позволяет намного эффективнее использовать существующие каналы связи, "сжимать" их. На одном конце канала связи информация делится на пакеты, каждый из которых, подобно письму, снабжается своим индивидуальным адресом. По каналу связи пакеты многих абонентов передаются "вперемежку". На другом конце канала связи пакеты с одним адресом снова объединяются и направляются своему адресату. Такой пакетный принцип широко используется в сети Интернет.

Через персональный компьютер можно по сети Internet посылать и получать письма, тексты, документы, рисунки, фотографии. Но точно так же работает и Интернет-телефония (IP-телефония) - телефонный разговор двух пользователей персональных компьютеров. Для этого оба пользователя должны иметь микрофоны, соединенные с компьютером, и наушники или звуковые колонки, а их компьютеры - звуковые карты (желательно для двухсторонней связи). При этом компьютер преобразует аналоговый "голосовой" сигнал (электрический аналог звука) в цифровой (комбинации импульсов и пауз), который затем передается по сетям Интернета. На другом конце линии компьютер вашего собеседника производит обратное преобразование (цифровой сигнал в аналоговый), и голос воспроизводится как в обычном телефоне. Интернет-телефония значительно дешевле междугородных и международных разговоров по обычному телефону. Ведь при IP-телефонии нужно платить только за пользование Интернетом.

Имея персональный компьютер, звуковую карту, совместимые с ней микрофон и наушники (или звуковые колонки), Вы можете с помощью Интернет-телефонии позвонить любому абоненту, у которого обычный городской телефон. При этом разговоре Вы также будете платить только за пользование Интернетом.

Перед началом пользования Интернет-телефонией абоненту - владельцу персонального компьютера необходимо установить на него специальную программу.

Для пользования услугами Интернет-телефонии вообще не обязательно иметь персональный компьютер. Для этого достаточно иметь обычный телефон с тональным набором. В этом случае каждая набранная цифра уходит в линию не в виде разного количества электрических импульсов, как при вращении диска, а в виде переменных токов разной частоты. Такой тоновый режим есть в большинстве современных телефонных аппаратов.

Для пользования Интернет-телефонией с помощью телефонного аппарата нужно купить кредитную карточку, и позвонить на мощный центральный компьютер-сервер по указанному на карточке номеру. Затем автомат сервера голосом (по выбору на русском или английском языке) сообщает команды: набрать с помощью кнопок телефонного аппарата серийный номер и ключ карточки, набрать код страны и номер своего будущего собеседника. Далее сервер превращает аналоговый сигнал в цифровой, отправляет его в другой город, страну или на другой континент в находящийся там сервер, который снова преобразует цифровой сигнал в аналоговый и отправляет его нужному абоненту. Собеседники разговаривают как по обычному телефону, правда, иногда чувствуется небольшая (на доли секунды) задержка ответа. Напомним еще раз, что для экономии каналов связи голосовая информация передается "пакетами" цифровых данных: ваша голосовая информация расчленяется на отрезки, пакеты, называемые Интернет-протоколами (IP).

TCP/IP (Transmission Control Protocol / Internet Protocol) - это основной интернет-протокол, или формат передачи данных в Интернете. При этом IР обеспечивает продвижение пакета по сети, а ТСР гарантирует надежность его доставки. Они обеспечивают разбивку передаваемых данных на пакеты, передачу каждого из них получателю по произвольному маршруту, а потом - сборку в правильном порядке и без потерь.

По каналу связи последовательно передаются не только ваши пакеты, но и пакеты нескольких других абонентов. На другом конце линии связи все ваши пакеты снова объединяются, и ваш собеседник слышит всю вашу речь. Для того чтобы не чувствовать задержки в разговоре, этот процесс не должен превышать 0,3 секунды. Так производится сжатие информации, благодаря которому Интернет-телефония в несколько раз дешевле обычных междугородных и тем более международных переговоров.

В 2003 году была создана программа Skype (www.skype.com), совершенно бесплатная и не требующая от пользователя практически никаких знаний ни для ее установки, ни для использования. Она позволяет разговаривать с видеосопровождением собеседникам, сидящим у своих компьютеров в разных концах света. Для того чтобы собеседники могли видеть друг друга, компьютер каждого из них должен быть снабжен web-камерой.

Вот такой длинный путь в развитии средств связи проделало человечество: от сигнальных костров и барабанов до сотового мобильного телефона, который позволяет практически мгновенно связаться двум людям, находящимся в любых точках нашей планеты.

<

Мобильная сотовая связь


Связь называют мобильной, если источник информации либо ее получатель (или оба) перемещаются в пространстве. Радиосвязь с момента возникновения была мобильной. Первые радиостанции предназначались для связи с подвижными объектами - кораблями. Ведь один из первых приборов радиосвязи А.С. Попова был установлен на броненосце "Адмирал Апраксин". И именно благодаря радиосвязи с ним удалось зимой 1899/1900 годов спасти этот корабль, затертый во льдах в Балтийском море.

Долгие годы для осуществления индивидуальной радиосвязи между двумя абонентами требовался свой отдельный канал радиосвязи, работающий на одной частоте. Одновременную радиосвязь по многим каналам можно было бы обеспечить, выделив каждому каналу определенную полоску частот. Но ведь частоты нужны и для радиовещания, телевидения, радиолокации, радионавигации, военных нужд. Поэтому и число каналов радиосвязи было весьма ограничено. Она использовалась для военных целей, правительственной связи. Так, в автомобилях, которыми пользовались члены политбюро ЦК КПСС, были установлены телефоны мобильной связи. Устанавливалась они в полицейских машинах и радиотакси. Для того чтобы мобильная связь стала массовой, понадобилась новая идея ее организации. Эту идею в 1947 году высказал Д. Ринг, сотрудник американской компании Bell Laboratories. Она заключалась в разделении пространства на небольшие участки - соты (или ячейки) радиусом 1-5 километров и в отделении радиосвязи в пределах одной ячейки от связи между ячейками. Это позволяло использовать в разных сотах одни и те же частоты. В центре каждой ячейки предлагалось расположить базовую - приемно-передающую - радиостанцию для обеспечения радиосвязи в пределах ячейки со всеми абонентами. У каждого абонента своя микрорадиостанция - "мобильный телефон" - комбинация телефона, приемопередатчика и мини-компьютера. Абоненты связываются между собой через базовые станции, соединенные друг с другом и с городской телефонной сетью.

Каждая сота должна обслуживаться базовым радиопередатчиком с ограниченным радиусом действия и фиксированной частотой.
Это дает возможность повторно использовать ту же частоту в других сотах. Во время разговора сотовый радиотелефон соединен с базовой станцией радиоканалом, по которому передается телефонный разговор. Размеры соты определяются максимальной дальностью связи радиотелефонного аппарата с базовой станцией. Эта максимальная дальность является радиусом соты.

Идея мобильной сотовой связи состоит в том, что, еще не выйдя из зоны действия одной базовой станции, мобильный телефон попадает в зону действия любой соседней вплоть до наружной границы всей зоны сети.

Для этого созданы системы антенн-ретрансляторов, перекрывающих свою "соту" - область поверхности Земли. Чтобы связь была надежной, расстояние между двумя соседними антеннами должно быть меньше радиуса их действия. В городах оно составляет около 500 метров, а в сельской местности - 2-3 км. Мобильный телефон может принимать сигналы сразу от нескольких антенн-ретрансляторов, но настраивается он всегда на самый мощный сигнал.

Идея мобильной сотовой связи заключалась еще и в применении компьютерного контроля за телефонным сигналом от абонента, когда он переходит от одной сотовой ячейки к другой. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Все происходит так быстро, что абонент просто этого не замечает.

Центральной частью системы мобильной связи являются компьютеры. Они отыскивают абонента, находящегося в любой из сот, и подключают его к телефонной сети. Когда абонент перемещается из одной ячейки в другую, они передают абонента с одной базовой станции на другую, а также подключают абонента из "чужой" сотовой сети к "своей", когда он оказывается в зоне ее действия, - осуществляют роуминг (что по-английски означает "странствие" или "бродяжничество").

Принципы современной мобильной связи были достижением уже конца 40-х годов. Однако в те времена компьютерная техника была еще на таком уровне, что ее коммерческое применение в системах телефонной связи было затруднено.


Поэтому практическое применение сотовой связи стало возможным только после изобретения микропроцессоров и интегральных полупроводниковых микросхем.

Первые сотовые телефоны весили больше килограмма. Сконструировал первый сотовый телефонный аппарат Мартин Купер (фирма Motorola, США). Весил это аппарат 1,15 кг и имел габариты 22,5х12,5х3,75 см (рис. 4.2). На передней панели было расположено 12 клавиш, из них 10 цифровых и две для отправки вызова и прекращения разговора. Дисплея и дополнительных функций у него не было, т.к. они увеличивают вес аппарата. Аккумулятор позволял общаться 35 минут, но заряжать его приходилось более 10 часов. На крыше 50-этажного здания в Нью-Йорке была смонтирована базовая станция, способная обслуживать не более 30 абонентов и соединять их с наземными линиями связи.

Первым этот телефон взял в руки Мартин Купер весенним утром 3 апреля 1973 года. Он набрал номер Джоэла Энгела, начальника исследовательского отдела Bell Laboratories, и произнес следующие слова: "Представь себе, Джоэл, что я звоню тебе с первого в мире сотового телефона. Он у меня в руках, а я иду по нью-йоркской улице".


Рис. 4.2.  Изобретатель сотового телефонного аппарата Мартин Купер (фирма Motorola) с первым сотовым телефоном

Вес современных сотовых телефонов через 33 года, в 2006 году, составляет всего 70-100 г (рис. 4.3).


Рис. 4.3.  Современный сотовый телефон

В июле 1978 года начала работу Advanced Mobile Phone Service (Усовершенствованная Служба Мобильных Телефонов) или AMPS.

В декабре 1979 года в Токио начала работу первая сотовая сеть связи из 88 базовых станций. В 1984 г. сеть была расширена до масштабов всей Японии.

Эксплуатация первой в Европе системы сотовой связи стандарта NMT-450 (Nordic Mobile Telephone), предназначенной для работы в диапазоне 450 МГц, началась в 1981 году в Швеции, Исландии, Дании, Норвегии, Финляндии и Саудовской Аравии. Затем началась эксплуатация систем связи того же типа в странах Европы и Юго-Восточной Азии.


В 1985 году на базе этого стандарта был разработан стандарт NMT-900 диапазона 900 МГц, позволивший увеличить абонентскую емкость системы связи. Подобные стандарты были введены в США, Франции и Великобритании.

Однако все эти стандарты являются аналоговыми и относятся к первому поколению систем сотовой связи. В них используется аналоговый способ передачи информации с помощью частотной (ЧМ) или фазовой (ФМ) модуляции - как в обычных радиостанциях. Этот способ имеет ряд существенных недостатков, главными из которых являются возможность прослушивания разговоров другими абонентами и невозможность борьбы с замиранием сигналов при передвижении абонента и под влиянием ландшафта и зданий. Перегруженность частотных диапазонов вызывала помехи при разговорах.

Поэтому к концу 1980-х годов началось создание второго поколения систем сотовой связи, основанных на базе цифровых методов обработки сигналов. В 1990 году был разработан стандарт GSM-900 для диапазона 900 МГц, который расшифровывается как Global System for Mobile Communications. А в 1991 году на основе GSM был разработан стандарт для диапазона 1800 МГц. Подобные стандарты были приняты в США и Японии.

В России аналоговые системы сотовой связи на основе стандарта NMT-450 появились с опозданием на 10 лет, но зато цифровые системы на основе стандарта GSM - с опозданием только на 3 года. Стандарты NMT и GSM утверждены в нашей стране в качестве федеральных. В Москве активнее всего развиваются сотовые сети на основе цифрового стандарта GSM, а в регионах - аналоговые сети. Системы стандарта GSM в России наиболее активно продвигают на рынке три оператора - МТС, "Билайн" и "МегаФон". Сегодня на основе этого стандарта работают уже более 70% всех сотовых телефонов в мире. России пошло на пользу опоздание с внедрением сотовой связи. У нас был сразу принят цифровой стандарт GSM. Многие современные сотовые телефоны оснащены возможностью высокоскоростного доступа в Интернет по стандарту GPRS (General Packet Radio Service).



В США услугами сотовой телефонной связи пользуются примерно 81 миллион человек, что составляет более 31 процента от общей численности населения страны в 260 миллионов.

В странах Европы, включая Россию, этот показатель выше - примерно 33,8% всего населения. Максимальный в мире показатель - в Финляндии: 63,5% населения страны владеют сотовыми телефонами.

Число пользователей сотовой связи в России в 2000 г. составляло 3,3 млн человек, в 2001 г. - 7,8 млн, в 2002 г. - 17,7 млн, в 2003 г. - 32 млн. При этом уровень проникновения сотовой связи на конец октября 2003 г. в Москве и Московской области составляет 63%, в Петербурге и Ленинградской области - 51%, а в других регионах России - 22%.

Персональная сотовая мобильная связь пользуется все большей популярностью, особенно у молодежи. Общее число ее пользователей в мире превышает 600 миллионов абонентов.

Важным преимуществом мобильной сотовой связи является возможность пользоваться ею вне общей зоны своего оператора - роуминг. Для этого различные операторы договариваются между собой о взаимной возможности пользования своим зонами для пользователей. Абонент, покидая общую зону своего оператора, автоматически переключается на зоны других операторов даже при перемещении из одной страны в другую, например, из России в Германию или во Францию. Либо, находясь в России, пользователь может звонить по сотовой связи в любую страну. Таким образом, сотовая связь обеспечивает пользователю возможность связываться по телефону с любой страной, где бы он не находился.

Ведущие компании-производители сотовых телефонов ориентируются на единый европейский стандарт - GSM. Именно поэтому их аппаратура технически совершенна, но относительно недорога. Ведь они могут позволить себе выпускать огромные партии телефонов, находящих сбыт.

Удобным дополнением к сотовому телефону стала система коротких сообщений SMS (Short Message Service). Она используется для передачи коротких сообщений прямо на телефон современной цифровой системы GSM без применения дополнительного оборудования, только с помощью цифровой клавиатуры и экранчика-дисплея сотового телефона.


Прием SMS- сообщений производится также на цифровой дисплей, которым оснащен любой сотовый телефон. SMS можно использовать в тех случаях, когда обычный телефонный разговор не является самым удобным видом связи (например, в шумном переполненном поезде). Можно послать знакомому по SMS свой номер телефона. Из-за низкой стоимости SMS является альтернативой телефонному разговору. Максимальная величина SMS-сообщения составляет 160 символов. Посылать его можно несколькими способами: звонком в специальную службу, а также с помощью своего телефона GSM с функцией отправки, с помощью Интернета. Система SMS может обеспечивать дополнительные услуги: посылать на Ваш телефон GSM курс валют, прогноз погоды и т.д. По существу, телефон GSM с системой SMS является альтернативой пейджеру.

Но и система SMS - не последнее слово в сотовой связи. В наиболее современных сотовых телефонах (например, фирмы Nokia) появилась функция Chat (в русской версии - "диалог"). С ее помощью можно общаться в режиме реального времени с другими владельцами сотовых телефонов, как это делается в Интернете. По существу, это новый вид обмена посланиями SMS. Для этого вы составляете послание своему собеседнику и отправляете его. Текст вашего послания появляется на дисплеях обоих сотовых телефонов - вашего и вашего собеседника. Потом он вам отвечает и на дисплеях высвечивается его послание. Таким образом, вы ведете электронный диалог. Но если сотовый телефон вашего собеседника не поддерживает данную функцию, то он будет получать обычные SMS-сообщения.

Появились и сотовые телефоны с поддержкой высокоскоростного доступа в Интернет через GPRS (General Packet Radio Service) - стандарт пакетной передачи данных по радиоканалам, при котором телефону не нужно "дозваниваться": аппарат постоянно поддерживает соединение, отправляет и принимает пакеты данных. Выпускаются и сотовые телефонные аппараты со встроенной цифровой фотокамерой.

Наконец, самые сложные и дорогие аппараты - это смартфоны и коммуникаторы, сочетающие возможности сотового телефона и карманного компьютера.


Оптоволоконные линии связи


В качестве проводных линий связи используются в основном телефонные линии и телевизионные кабели. Наиболее развитой является телефонная проводная связь. Но ей присущи серьезные недостатки: подверженность помехам, затухание сигналов при передаче их на значительные расстояния и низкая пропускная способность. Всех этих недостатков лишены оптоволоконные линии - вид связи, при котором информация передается по оптическим диэлектрическим волноводам ("оптическому волокну").

Оптическое волокно считается самой совершенной средой для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния - широко распространенного и недорогого материала, в отличие от меди. Оптическое волокно очень компактное и легкое, оно имеет диаметр всего около 100 мкм.

История развития оптоволоконных линий связи началась в 1965-1967 гг., когда появились опытные волноводные линии связи для передачи информации. С 1970 г. активно проводились работы по созданию световодов и оптических кабелей, использующих видимое и инфракрасное излучения оптического диапазона волн. Создание волоконного световода и полупроводникового лазера сыграли решающую роль в быстром развитии оптоволоконной связи. К началу 1980-х годов такие системы связи были разработаны и испытаны. Основными сферами применения таких систем стали телефонная сеть, кабельное телевидение, вычислительная техника, система контроля и управления технологическими процессами и т. д.

Первое поколение передатчиков сигналов по оптическому волокну было внедрено в 1975 году. В начале XXI века внедряется уже 4-е поколение этой аппаратуры. В настоящее время быстрыми темпами развиваются системы дальней оптической связи на расстояния в многие тысячи километров. Успешно эксплуатируются трансатлантические линии связи США-Eвропа, Тихоокеанская линия США-Гавайские острова-Япония. Ведутся работы по завершению строительства глобального оптоволоконного кольца связи Япония-Сингапур-Индия-Саудовская Аравия-Египет-Италия.


В России компания "ТрансТелеКом" создала оптоволоконную сеть связи протяженностью более 50000 км (рис. 4.1). Она проложена вдоль железных дорог страны, имеет более 900 узлов доступа в 71 из 89 регионов России и дублирована спутниковыми каналами связи. В результате к концу 2001 года вступила в строй единая магистральная цифровая сеть связи. Она обеспечивает услуги междугородней и международной телефонной связи, Интернет, видеоконференции, видео, кабельное телевидение в 71 из 89 регионов России, где проживает 85-90% населения. Диапазон ее услуг: от простейшего речевого обмена и электронной почты до комбинированных (видео + голос + данные).

Оптоволоконные линии отличают от традиционных проводных линий:

очень высокая скорость передачи информации (на расстояние более 100 км без ретрансляторов);


Рис. 4.1.  Оптоволоконная сеть "Транстелеком"

защищенность передаваемой информации от несанкционированного доступа; высокая устойчивость к электромагнитным помехам; стойкость к агрессивным средам; возможность передавать по одному волокну одновременно до 10 миллионов телефонных разговоров и одного миллиона видеосигналов; гибкость волокон; малые размеры и масса; искро-, взрыво- и пожаробезопасность; простота монтажа и укладки; низкая себестоимость; высокая долговечность оптических волокон - до 25 лет.

В настоящее время обмен информацией между континентами осуществляется главным образом через подводные оптоволоконные кабели, а не через спутниковую связь. При этом главной движущей силой развития подводных оптоволоконных линий связи является Интернет.

Подводные кабели связи существуют уже более 150 лет. В 1851 году инженер Брет проложил первый подводный кабель через Ла-Манш, соединив таким образом телеграфной связью Англию с континентальной Европой. Это стало возможным благодаря применению гуттаперчи - вещества, которое способно изолировать в воде провода, несущие ток.

В 1857-1858 гг. американский бизнесмен Сайрус Филд разработал проект сообщения Европы с Северной Америкой с помощью телеграфного кабеля и осуществил его прокладку по дну Атлантического океана.Несмотря на огромные технические и финансовые трудности, после ряда неудач телеграфная линия с 1866 г. начала устойчиво работать. Скорость передачи информации составляла всего 17 слов в минуту. В 1956 году был проложен первый телефонный коаксиальный кабель, а в последующие годы - еще несколько, с большей пропускной емкостью, чтобы удовлетворить потребности в передаче информации между Европой и Америкой.

Наконец в 1988-1989 гг. были установлены первые оптоволоконные системы - трансатлантическая и транстихоокеанская, со скоростью передачи информации по паре световодов 280 Мбит/с; при этом в качестве ретрансляторов использовались электронные усилители. Постепенно скорость увеличилась до 2,5 Гбит/с, а вместо электронных ретрансляторов стали применяться более совершенные эрбиевые волоконные усилители (эрбий - редкоземельный химический элемент). В 1990-е годы проложено более 350 000 км оптического кабеля, он связывает более 70 стран мира.


Пейджинговая связь


Пейджинговая связь - это радиотелефонная связь, пересылка по телефону продиктованных абонентом-отправителем сообщений и прием их по радиоканалу абонентом-получателем с помощью пейджера - радиоприемника с жидкокристаллическим дисплеем, на котором высвечиваются принятые буквенно-цифровые тексты. Пейджер - это средство односторонней связи: на него можно только получать сообщения, но отправлять с него сообщения нельзя.

История пейджинга как средства персонального радиовызова началась с середины 1950-х годов в Англии. Первое такое устройство было разработано в 1956 году. Количество абонентов могло быть не более 57. Когда абонент получал тоновый сигнал, он должен был поднести устройство к уху и в речевой форме прослушать сообщение, которое передавал диспетчер. Пользователями первой сети в Англии стали врачи. Сети, существовавшие в то время, носили местный характер и служили нуждам конкретных служб. Самыми крупными из них были службы аэропортов. Некоторые подобные сети существуют и сегодня. Широкое распространение пейджинга началось в конце 1970-х годов в США.

С тех пор системы пейджинга получили достаточно широкое распространение в городах Европы и США. В это же время пейджинг пришел в Россию.

Первые пейджеры были простыми приемниками частотно-модулированного сигнала. Они содержали несколько настроенных контуров, отслеживающих характерную последовательность низкочастотных сигналов (тонов). При получении этих тонов устройство подавало звуковые сигналы. Поэтому такие пейджеры называют тональными.

Переход к цифровым системам был неизбежен. Тональное кодирование не подходило для передачи буквенно-цифровых сообщений.

К концу 2000 года число владельцев пейджеров в европейских странах превысило 20 миллионов.

История пейджинга в России (тогда еще СССР) началась в конце 1960-х годов. Системы персонального радиовызова широко использовались отдельными государственными структурами. В 1980 году во время московской Олимпиады также широко использовался пейджинг. Тогда это были простейшие тоновые модели, которые предназначались, прежде всего, для скорой помощи и службы безопасности Олимпиады. С окончанием Олимпиады пейджеры использовать перестали, и на много лет этот вид связи был забыт.

В 1990-х годах пейджинг начал бурно развиваться, но только до тех пор, пока не появились сотовые телефоны - средство двухсторонней связи. Правда, был разработан твейджер - пейджер с возможностью отправления сообщений, более дешевый, чем сотовый телефон. Но он не смог конкурировать с сотовым телефоном, обеспечивающим двухстороннюю голосовую связь.

Поэтому с момента начала развития сотовой связи развитие пейджинга остановилось. В столичных и в большинстве крупных городов пейджинговые компании закрылись, уступив место операторам сотовой связи. Число пользователей сотовой связи исчисляется многими миллионами. Она стала массовой и конкурирует со стационарной телефонной связью, а цена телефонных аппаратов и тарифы сотовой связи резко снизилась. Пейджинговая связь сохранилась только в регионах, а число клиентов пейджинговых компаний не превышает ста тысяч.



Проводные линии связи


Проводные линии электросвязи делятся на кабельные, воздушные и оптоволоконные.

Линии электросвязи возникли одновременно с появлением электрического телеграфа. Первые линии связи были кабельными. Они прокладывались под землей. Однако вследствие несовершенства конструкции подземные кабельные линии связи вскоре уступили место воздушным. Первая воздушная линия большой протяженности в России была построена в 1854 году между Санкт-Петербургом и Варшавой. В начале 70-х годов прошлого столетия заработала воздушная телеграфная линия от Санкт-Петербурга до Владивостока длиной около 10 тыс. км. В 1939 году была пущена в эксплуатацию величайшая в мире по протяженности высокочастотная телефонная магистраль Москва-Хабаровск длиной 8300 км. Обычный городской телефонный кабель состоит из пучка тонких медных или алюминиевых проводов, изолированных друг от друга и заключенных в общую оболочку. Кабели состоят из разного числа пар проводов, каждая из которых используется для передачи телефонных сигналов.

В 1851 г. одновременно с постройкой железной дороги между Москвой и Санкт-Петербургом был проложен телеграфный кабель, изолированный резиной. Первые подводные кабели были проложены в 1852 г. через Северную Двину и в 1879 г. через Каспийское море между Баку и Красноводском. В 1866 г. вступила в строй подводная кабельная трансатлантическая магистраль телеграфной связи между Францией и США.

В 1882-1884 гг. в Москве, Санкт-Петербурге, Риге, Одессе были построены первые в России городские телефонные сети. В 90-х годах прошлого столетия на городских телефонных сетях Москвы и Петрограда были подвешены первые кабели, насчитывающие до 54 жил. В 1901 г. началась постройка подземной городской телефонной сети.

Первые конструкции кабелей связи, относящиеся к началу XX века, позволили осуществлять телефонную передачу на небольшие расстояния. Это были так называемые городские телефонные кабели с воздушно-бумажной изоляцией жил и парной скруткой. В 1900-1902 гг. дальность передачи телеграфной и телефонной связи была увеличена в несколько раз.


Важным этапом в развитии техники связи явилось изобретение, а начиная с 1912-1913 гг. - освоение производства электронных ламп.

В 1917 г. В.И. Коваленковым был разработан и испытан на линии телефонный усилитель на электронных лампах. В 1923 г. была осуществлена телефонная связь с усилителями на линии Харьков-Москва-Петроград.

В 1930-х годах началось развитие многоканальных систем передачи. Стремление расширить спектр передаваемых частот и увеличить пропускную способность линий привело к созданию новых типов кабелей, так называемых коаксиальных. Они используются для передачи телевизионных сигналов высокой частоты, а также для междугородней и международной телефонной связи. Одним проводом в коаксиальном кабеле служит медная или алюминиевая трубка (или оплетка), а другим - вложенная в нее центральная медная жила. Они изолированы друг от друга и имеют одну общую ось. Такой кабель имеет малые потери, почти не излучает электромагнитных волн и поэтому не создает помех. Изобретателем коаксиального кабеля является сотрудник всемирно известной фирмы Bell Telephone Laboratories Cергей Aлександрович Щелкунов - эмигрант из Советской России. Первый в мире коаксиальный кабель был проложен в 1936 г. на экспериментальной линии Нью-Йорк-Филадельфия. По кабелю одновременно передавались 224 телефонных разговора.

Эти кабели допускают передачу энергии при частоте токов до нескольких миллионов герц и позволяют производить по ним передачу телевизионных программ на большие расстояния. По первым трансатлантическим подводным кабелям, проложенным в 1856 г., организовывали лишь телеграфную связь, и только через 100 лет, в 1956 г., была сооружена подводная коаксиальная магистраль между Европой и Америкой для многоканальной телефонной связи.


Радиорелейные линии связи


Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Первая такая линия протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.

В 50-х годах были созданы многоканальные радиорелейные станции (РРС), использующие диапазон сверхвысоких частот и методы частотного и/или временного разделения каналов. К началу 1970-х годов во всех развитых странах была создана густая сеть многоканальных линий радиорелейной связи с несколькими тысячами каналов в каждой линии.

В России первая магистральная радиорелейная система была создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем "КУРС". Все это позволило в 1960-1970-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 1970-х годов в стране была построена радиорелейная линия с огромной емкостью каналов связи, протяженность которой составляет около 10 тыс. км. Суммарная протяженность радиорелейных линий в СССР превысила к середине 1970-х годов 100 тыс. км.

За последние десятилетия необходимость передавать данные - информацию, представленную в цифровом виде, - привела к созданию цифровых систем передачи. Появились цифровые радиорелейные системы передачи данных, способные обмениваться цифровой информацией.



Современные средства и линии связи


Линии (каналы) связи обеспечивают передачу и распространение сигналов от передатчика к приемнику. По физической природе передаваемых сигналов различают электрические (проводные и радио), акустические и оптические каналы связи.

Древнейшими каналами связи являются акустические и оптические.

Для передачи информации использовался звук - барабанов и колоколов. Человеческая речь также передается по акустическому каналу связи, ограниченному пределом слышимости. Принцип передачи информации голосом на большие расстояния использовался еще до новой эры.

У персидского царя Кира (VI век до н. э.) состояло для этой цели на службе 30000 человек, именуемых "царскими ушами". Они располагались на вершинах холмов и сторожевых башен в пределах слышимости друг друга и передавали сообщения, предназначенные царю, и его приказания. За один день известия по такому акустическому "телефону" проходили расстояние тридцатидневного перехода.

Сигнальные костры - это древнейший оптический канал связи.

В наше время наибольшее распространение получили электрические каналы связи. Это совокупность технических устройств, обеспечивающих передачу сообщений любого вида от отправителя к получателю. Она осуществляется с помощью электрических сигналов, распространяющихся по проводам, или радиосигналов. Различают каналы электросвязи: телефонные, телеграфные, факсимильные, телевизионные, проводного и радиовещания, телемеханические, передачи данных и т. д. Составной частью каналов связи являются линии связи - проводные и беспроводные (радиосвязь). В свою очередь проводная связь может осуществляться по электрическому кабелю и по оптоволоконной линии. А радиосвязь осуществляется по ДВ-, СВ-, КВ- и УКВ-диапазонам без применения ретрансляторов, по спутниковым каналам с применением космических ретрансляторов, по радиорелейным линиям с применением наземных ретрансляторов и по сотовой связи с использованием сети наземных базовых радиостанций.



Спутниковая связь и навигация


Космическая или спутниковая связь по существу является разновидностью радиорелейной связи и отличается тем, что ее ретрансляторы находятся не на поверхности Земли, а на спутниках в космическом пространстве.

В 1965 году в СССР был запущен первый спутник связи "Молния-1". Позднее была создана система дальней космической связи "Орбита". Она состоит из сети наземных станций и искусственных спутников Земли "Молния", "Радуга", "Горизонт". На территории России размещено около 100 таких станций. Через спутники передаются телеграфные сообщения, телефонные разговоры, телевизионные и фотоизображения в страны всех континентов. Однако спутники "Молния" вращаются вокруг Земли по вытянутым эллиптическим орбитам. Для слежения за ними антенны наземных приемных станций должны постоянно поворачиваться. Гораздо проще решают эту задачу спутники, вращающиеся по стационарной круговой орбите, которая находится в плоскости экватора на высоте 36000 км. Они совершают один оборот вокруг Земли за 24 часа и поэтому кажутся наземному наблюдателю висящими неподвижно над одной точкой нашей планеты. Трех таких спутников достаточно для обеспечения связью всей Земли. Уже используются работающие на стационарных орбитах спутники связи "Радуга" и телевизионные спутники "Экран". Для приема их сигналов не нужны сложные наземные станции. Телевизионные передачи с таких спутников принимаются прямо на несложные коллективные и даже индивидуальные антенны.

Уже созданы международная спутниковая система для спасения экипажей терпящих бедствие судов и самолетов КОСПАС-САПСАТ, международная космическая система "Инмарсат" для обеспечения телеграфной и телефонной связи между кораблями, плавающими в любых точках Земли.

В 1980-е годы началось развитие персональной спутниковой связи. В начале XXI века число ее абонентов составляет несколько миллионов человек, а еще через 10 лет - значительно больше. Произойдет объединение спутниковых и наземных систем связи в единую глобальную систему персональной связи.
Будет обеспечена досягаемость любого абонента путем набора его телефонного номера независимо от его местонахождения. В этом состоит преимущество спутниковой связи по сравнению с сотовой (она рассматривается ниже в этой главе), поскольку она не имеет привязки к конкретной местности. Ведь в начале XXI века зона охвата сотовой связи составляет только 15% земной поверхности. Поэтому спрос на персональную подвижную связь во многих регионах мира можно обеспечить только с помощью спутниковых систем связи. Кроме речевой (радиотелефонной) связи они позволяют определять месторасположение (координаты) потребителей.

Спутниковый телефон непосредственно соединяется со спутником, находящимся на околоземной орбите. Со спутника сигнал поступает на наземную станцию, откуда передается в обычную телефонную сеть. Число спутников, необходимое для стабильной связи в любой точке планеты, зависит от радиуса орбиты той или иной системы спутников.

В настоящее время действует первая глобальная система связи "Иридиум". Она позволяет клиенту оставаться на связи, где бы он не находился, и пользоваться при этом одним и тем же телефонным номером.

Система состоит из 66 низкоорбитальных спутников, расположенных на расстоянии 780 км от поверхности Земли. Она обеспечивает прием и передачу сигнала с мобильного телефона, находящегося в любой точке земного шара. Сигнал, поступивший на спутник, передается по цепочке на следующий спутник, пока не дойдет до ближайшей к вызываемому абоненту наземной станции системы. Таким образом обеспечивается высокое качество сигнала.

Основной недостаток персональной спутниковой связи - ее относительная дороговизна по сравнению с сотовой. Кроме того, в спутниковые телефоны встраиваются передатчики большой мощности. Поэтому они считаются небезопасными для здоровья пользователей.

Самые надежные спутниковые телефоны работают в сети Инмарсат, созданной более 20 лет назад. Спутниковые телефоны системы "Инмарсат" представляют собой чемоданчик с откидной крышкой размером с первые портативные компьютеры.Крышка спутникового телефона по совместительству является и антенной, которую необходимо поворачивать по направлению к спутнику (на дисплее телефона отображается уровень сигнала). В основном такие телефоны используются на судах, поездах или большегрузных автомобилях. Каждый раз, когда необходимо позвонить или ответить на чей-то звонок, нужно будет устанавливать спутниковый телефон на какую-нибудь ровную поверхность, раскрывать крышку и крутить его, определяя направление максимального сигнала. Стоят такие спутниковые телефоны более 2500 долларов и весят от 2,2 кг. Минута разговора по такому спутниковому телефону стоит 2,5 доллара США и выше.


Спутниковое цифровое телевидение


Благодаря развитию космонавтики и цифровых технологий в последние годы возникло спутниковое цифровое телевидение. Главным его отличием является возможность прямого приема со спутника на индивидуальную домашнюю антенну, обеспечивающая свободу выбора большого числа телевизионных каналов и программ - на все вкусы.

Цифровое телевидение представляет собой современную замену традиционному аналоговому телевидению. Оно дает возможность передавать и принимать большое число телевизионных программ с идеальным "цифровым" качеством. Поясним, что означает это "цифровое" качество. В аналоговом телевидении качество телевизионных программ зависит от уровня принимаемого сигнала и соотношения сигнал/шум, то есть оно в значительной степени зависит от помех. В цифровом телевидении качество телевизионных программ неизменное и всегда высокое. Для этого только нужно, чтобы принимаемый сигнал превышал некоторый пороговый уровень. Как только этот порог перейден, то телевизионные передачи принимаются с постоянным качеством, не зависящим от помех, а зависящим лишь от качества передаваемого видеоматериала и скорости передаваемого цифрового потока. Он может передаваться с помощью спутниковых, кабельных и наземных эфирных каналов связи. Наибольшее распространение в настоящее время получило спутниковое цифровое телевидение, а в России оно является единственной возможностью приема цифрового телевидения. За 4 года существования оно сумело в значительной степени вытеснить аналоговое телевидение. Сегодня доля цифровых телевизионных программ - около 90% от общего числа спутниковых телевизионных каналов. Это объясняется не только высоким качеством цифрового телевидения, но и его низкой стоимостью: вместо одного аналогового телеканала в каждой частоте можно разместить 4-8 цифровых каналов. Сегодня для жителей Европы доступно более 2000 телевизионных и радиоканалов.